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In this paper, we present a game-theoretic analysis of ransomware. To this end, we provide theoretical and

empirical analysis of a two-player Attacker-Defender (A-D) game, as well as a Defender-Insurer (D-I) game;

in the latter the attacker is assumed to be a non-strategic third party. Our model assumes that the defender

can invest in two types of protection against ransomware attacks: (1) general protection through a deterrence
effort, making attacks less likely to succeed, and (2) a backup effort serving the purpose of recourse, allowing
the defender to recover from successful attacks. The attacker then decides on a ransom amount in the event of

a successful attack, with the defender choosing to pay ransom immediately, or to try to recover their data first

while bearing a recovery cost for this recovery attempt. Note that recovery is not guaranteed to be successful,

which may eventually lead to the defender paying the demanded ransom. Our analysis of the A-D game shows

that the equilibrium falls into one of three scenarios: (1) the defender will pay ransom immediately without

having invested any effort in backup, (2) the defender will pay ransom while leveraging backups as credible

threat to force a lower ransom demand, and (3) the defender will try to recover data, only paying ransom when

recovery fails. We observe that the backup effort will be entirely abandoned when recovery is too expensive,

leading to the (worst-case) first scenario which rules out recovery. Furthermore, our analysis of the D-I game

suggests that the introduction of insurance leads to moral hazard as expected, with the defender reducing

their efforts; less obvious is the interesting observation that this reduction is mostly in their backup effort.

1 INTRODUCTION
Ransomware is a major type of cybercrime that organizations face today. It is a form of malicious

software, or malware, that encrypts files and documents on a computer system, which can be a

single PC or an entire network, including servers. Victims are often left with little choice: to regain

access to their encrypted data without a decryption key, they have to either pay a ransom to the

criminals behind the ransomware, or try to restore from data backup (or rebuild the system in the

absence of backup). Various real-world examples of these scenarios are given in the next section

when describing our models. It is more than a mere nuisance for companies, even small ones, if

vital files and documents, networks or servers are suddenly encrypted and inaccessible. Even worse,

a successful ransomware attack is often publicly and brazenly announced by the criminal, making

it known that one’s corporate data is being held hostage, adding pressure on the victim to resolve

it quickly, which almost always means swift payment.

This past year of a global pandemic saw a sharp increase in ransomware attacks. Group-IB

reported that ransomware attacks surged by 150% in 2020 with the average extortion amount

doubling [1]. According to Check Point [2], a new organization became a victim of ransomware

every 10 seconds in 2020 with remote workers experiencing a sharp uptick in such threats. Data

from NinjaRMM’s 2020 Ransomware Resiliency Report also shows that ransomware incidents

resulted in damages of between one and five million dollars for 35% of organizations whose IT

professionals were surveyed [3].

This increase in threats has also accelerated discussion by the insurance industry on whether and

how to provide ransomware coverage. The most recent court ruling on G&G Oil Co v. Continental
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Western Insurance Co. by the Indiana Supreme Court [4] further brings into sharp focus the

importance of much needed clarity in insurance coverage pertaining to ransomware payment and

will likely spur more development on this front.
1

In this study, we are interested in understanding what firms can do to reduce damages from

potential ransomware attacks and the role that ransomware insurance can play. We do so by

modeling and analyzing the strategic decision making in a ransomware attacker-defender-insurer

ecosystem. Specifically, we introduce two sequential games.

The first, attacker-defender (A-D) game models the interactions between an attacker (their action

being ransom demand) and a (risk-averse) defender (their actions including protection, backup,

pay or not pay, as detailed below).
2
This is formulated as a complete information game, where the

attacker is assumed to know the defender’s data value, risk attitude, cost of general protection, cost

of data backup, and cost of data recovery. This puts the attacker in a rather strong position, and

allows us to examine their best possible strategy in terms of ransom demand; it also serves as a

worst-case scenario for the defender.

The second, defender-insurer (D-I) gamemodels the interactions between a (risk-averse) defender

who is seeking ransomware insurance and an insurer who determines the policy terms of the

insurance. This is formulated as a complete information game between the defender and insurer,

with the attacker being a non-strategic third party (whose ransom demand is input to the game

model). This model treats the ransomware attack as a constant existence much like ambient noise,

and is justified by the fact that many such attacks are not targeted and the ransom amount is

set based on empirical knowledge of past successes rather than on individual victims’ specific

information.
3
This modeling choice also allows us to focus on the contractual relationship between

the defender and insurer and better understand the impact of insurance.

Since both are sequential, multi-stage games, the solution concept we employ is the subgame

perfect equilibrium [6]. Equilibrium outcome of the A-D game (ransom demand) is used as input to

the D-I game as the defender’s outside option, since insurance purchase is assumed to be voluntary.

However, this setup is in general not equivalent to a three-way, attacker-defender-insurer game,

which remains an interesting direction of future research.

There is a very rich literature on game theoretic attacker-defender models for generic attack

types, see e.g., [7–9], and an emerging literature of game theoretic analysis of ransomware attacks.

Examples include [10], which proposes a two-stage model that considers backup effort on the

defender’s part, but without the possibility of recovery failure or deterrence effort. Researchers also

draw heavily from game-theoretic literature on the more traditional form of kidnapping for ransom

to obtain insights on its digital parallel, ransomware. Examples include [11, 12] which invoke the

use of a negotiation model, which is critical to the successful recovery of a kidnapping victim in

the traditional form of ransom, and [13], which examines the impact of cooperative (negotiate or

pay) vs. competitive (avoid payment) strategies on the attacker and the victim.

Research on ransomware insurance are much more limited, despite an increasing literature

on ransomware and its economic, vendor, and consumer impact, see e.g., [14], and an increasing

1
In this case G&G fell victim to a ransomware attack and paid $35K in ransom. They sought coverage under their crime

insurance policy which was denied by their insurer, Continental Western Insurance, citing G&G had declined computer virus

and hacking coverage, and that the ransom payment was “voluntarily transferred” to the hacker, among other arguments.

G&G sued. Lower courts sided with the defendant, awarding the insurance company summary judgement; this was vacated

by the Indiana supreme court, stating that neither defendant nor plaintiff could be awarded summary judgment in the case.

2
The assumption of risk-aversion is because a risk-neutral defender would have no incentive to purchase insurance, which

is the focus of our next game.

3
While this assumption is consistent with historical data, it is quite likely that we are witnessing the onset of a major trend

shift, with increasingly targeted attacks and much higher ransom demand, see e.g., the recent Colonial Pipeline case [5].
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literature on cyber insurance in general, see e.g., [15–18]. In particular, [15] presents a network

model where the insurer is attack aware, but the insurance contracts is not designed specifically for

ransomware coverage. We will further discuss points that distinguish our study from prior works

in the next section.

The remainder of the paper is organized as follows. In Section 2 we provide a general overview

of our models and summarize main findings. In Section 3, we introduce the A-D game, and analyze

properties of the subgame perfect equilibrium. In Section 4, we introduce the D-I game, and study

its equilibrium and solution methods. In Section 5, we use numerical experiments to visualize

equilibrium strategies for both the A-D and D-I games, and summarize empirical findings. We

conclude and discuss future work in Section 6.

2 MODEL OVERVIEW ANDMAIN FINDINGS
We will assume that the attacker is financially driven, and the objective behind the attack is

monetary gain. This rules out the case where the attacker simply seeks to destroy data without any

real intention of releasing the decryption key, as was the case in the NotPetya malware attack in

June 2017 [19], masquerading as ransomware but designed to cause maximum damage.

We will assume that the cost for launching a ransomware attack is negligible, which eliminates

“attack or not attack” as a decision for the attacker: if it costs nothing, then the attacker will always

launch an attack. In reality many ransomware attacks are indeed very low cost, such as through

attachment in a spam email, see e.g., CryptoLocker [20], Avaddon [21], and can be easily automated

to target a large population. Since our focus is on the interaction between a single attacker and a

single defender (one of a large number of defenders or would-be victims), it seems reasonable to

assume that the attacker does not dwell on this decision for each individual target.

We will also assume there is no negotiation post-attack; in other words, once an attack is

successful, a ransom demand is issued, which is either payed in full or turned down. Post-attack

negotiation is a crucial part of kidnapping for ransom and arguably the most important mechanism

in the successful recovery of the kidnapping victim [22]. Ransom negotiation has been modeled in

the case of ransomware attacks as well in the literature, see e.g., [11]; however, this so far seems to

be rare in practice. One possible reason is again that a typical attacker targets a large amount of

entities at the same time, which makes negotiation impractical. At the same time, ransom demand

is typically not as high as a real kidnapping (e.g., $189 in the AIDS Trojan case [23], $750 in the

CtyptoLocker case [20], $500-$1500 in the Hermes case [24], or $35K for an oil and gas company

such as G&G [4]), which encourages payment in full or signals lack of room for negotiation.

It is worth noting that the most recent Colonial Pipeline case [5], where the victim promptly

made $4.4M in ransom payment, may be ushering in a new era in ransomware attacks: we may

start to see increasingly targeted, costly attacks demanding much higher ransom payment; we may

also start to see more involvement of law enforcement agencies in the payment decisions.

There are a few key elements in our model.

(1) The first is the separation of data backup effort from general protection measures. This

separation is consistent with defenses generally recommended to protect against ransomware

attacks [25], and gives the defender two types of actions or efforts to invest in prior to

an attack. General protection measures (e.g., employee training against social engineering,

software upgrades and vulnerability patching, etc.) serve the purpose of deterrence, and make

an attacker’s effort less likely to succeed. Data backup serves the purpose of recourse, in
the event a ransomware attack is successful, so that the defender may have the ability to

recover their data (but recovery is not guaranteed so there is residual risk) without having to
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pay ransom. As an example, Fujifilm recovered from a ransomware attack by restoring their

network from backups [26].

(2) The second is a recovery cost to capture the cost that the defender incurs in delaying ransom

payment while trying to recover their data. This models the cost of business interruption

following an attack until the crisis is resolved. This combined with the previous feature

gives the defender an additional decision point after an attack succeeds: they can decide to

pay right away or try to recover their data, knowing that the recovery may ultimately fail,

in which case they may be forced to pay ransom, or rebuild the system in the absence of

backup. As an example, after refusing to pay a ransom demand of $52,000, the city of Atlanta

eventually spent $2.6M to rebuild their system [27]. In another example, the malware Jigsaw

deletes files gradually as time passes, effectively increasing the victim’s cost when delaying

payment [28].

Our main findings are summarized below.

The Attacker-Defender (A-D) game. Since the attacker is strategic in this game, they will seek to

achieve a higher expected monetary gain. It seems obvious to assume that the attacker will prefer

a higher ransom. However, a high ransom will push the defender to invest in backup and attempt

to recover data first instead of paying ransom immediately. If so, the attacker is then faced with

an increased likelihood of receiving nothing (if data recovery is successful). On the other hand, a

lower ransom may persuade the defender to pay without trying to recover data, which removes

the recovery cost associated with data recovery as well as the possibility of failure. Our analysis of

the A-D game suggests that the equilibrium point is one of three types summarized below.

(1) The attacker demands a ransom equal to the data value in case of a successful attack. The

defender pays immediately without having invested anything in data backup. Paying ransom

immediately is a common case in the real world. For example, the Colonial Pipeline CEO

Joseph Blount agreed to pay a $4.4 million ransom to DarkSide after the company was

attacked [5]; the report reveals that Blount decided to pay ransom almost immediately.

(2) The defender invests zero
4
or positive effort in data backup, but nevertheless pays ransom

immediately. In response, the attacker’s ransom demand is lower than the data value, in-

centivizing the defender to not attempt data recovery. In this case data backup serves as a

credible threat so as to lower the ransom demand, but is not actually used.

(3) The defender invests zero or positive effort in backup and attempts data recovery, paying the

ransom only if recovery fails; at the same time, the attacker charges a ransom equal to the

data value. This case occurs far less often than the other two cases, and only happens when

the defender has low risk-aversion and has a relatively low cost of recovering data.

Note that the first case is a worst-case scenario for the defender, allowing the attacker to charge

the highest possible ransom knowing that the defender will have no choice but to pay. This case

occurs when the recovery cost is relatively large. In comparison, in the other two cases the defender

uses data backup to lower the attacker’s profit and their own expected loss, either using backup

as leverage to force the attacker to charge a lower ransom, or to leave them empty-handed by

recovering from backup. The second case occurs when the recovery cost is in a middle range, and

the third case when the recovery cost is low. We observe that a more risk-averse defender is more

likely to rule out recovery, due to fear of recovery failure, which makes them bear both the recovery

cost and the ransom demand. It is noteworthy that the highest backup effort occurs in the second

4
Note that our model does not necessarily assume that a zero backup effort results in no recovery options, e.g., in case the

defender has access to a no-cost backup option. Therefore, in this and the following case the defender may still benefit from

backups while not investing any backup effort.
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case, which is only leveraged as a threat but never used. Our numerical results show that a more

risk-averse defender is more likely to fall into the second case, i.e., making a compromise by paying

a lower ransom directly to the attacker, while lower risk-aversion means one is willing to pay the

highest ransom (either immediately or after failed recovery attempt).

The Defender-Insurer (D-I) game. In this game the attacker is a non-strategic third party, but

serves as the defender’s outside option (outside the insurance contract) to ensure that the defender’s

utility is not lower after purchasing insurance. The non-strategic assumption comes from our belief

that whether the defender is insured or not is generally not public knowledge. Our main findings

in this game are:

(1) The introduction of insurance causes the defender to invest less in efforts overall. This

manifestation of moral hazard has been observed in other insurance models, that the insureds

lower their effort once they have transferred all or part of their risk to the insurer. The more

interesting observation, however, is that this effort reduction is much more concentrated on

backup than on deterrence. In particular, we observe that, numerically, the backup effort is

almost completely abandoned under insurance, while some investment in deterrence remains,

albeit at a reduced level. This is despite the fact that the insurer (under an optimal policy)

covers almost the entire effort cost by the defender (in the form of premium discount) and

covers all losses upon a successful attack.

(2) The defender’s utility remains the same inside or outside insurance, and the attacker’s utility

increases, due to lower levels of backup and deterrence efforts. The insurer’s profit (whenever

it is positive) is essentially drawn from taking advantages of the defender’s risk-aversion.

Our numerical results support this claim by showing that the insurer’s profits increase as the

defender becomes more risk-averse.

(3) The introduction of insurance does not significantly alter the defender’s decision making in

dealing with the attacker (in terms of paying vs. recovering), but only their effort amount.

3 THE ATTACKER-DEFENDER (A-D) GAME
In this section we introduce and analyze the attacker-defender (A-D) game. This game involves two

players, an attacker and a risk-averse defender, making sequential moves over multiple stages. A

diagram illustrating this multi-stage game and all its possible outcomes is given in Figure 1, where

the two players’ utilities, denoted by𝑈𝑎 and𝑈𝑑 , are written out and explained in more detail below.

The defender’s utility 𝑈𝑑 takes the form 𝑈𝑑 = 𝑓𝛾 (𝑥), where 𝑥 is the total cost borne by the

defender and 𝛾 > 0 represents the risk attitude of the defender, with a larger 𝛾 indicating more risk

aversion.

The defender holds data of value 𝐼 > 0. The sequential game consists of the following four stages.

Stage I. The defender chooses a deterrence effort𝑊 ≥ 0 (such as investing in an effective firewall,

employee education against phishing campaigns, etc.), as well as a data backup effort 𝑌 ≥ 0.

Stage II. The attacker launches an attack with a success probability of 𝜃 (𝑊 ), a non-increasing
and convex function of the defender’s deterrence effort 𝑊 . We will denote by 𝜃𝑜 = 𝜃 (0) the
attack success probability under zero protection effort, and by 𝜃∞ = lim𝑊→∞ 𝜃 (𝑊 ) the minimum

achievable attack success probability.

• If the attack fails, then the game ends with𝑈𝑎 = 0 and𝑈𝑑 = 𝑓𝛾 (𝑊 + 𝑌 ).
• If the attack succeeds, then the attacker gains access to and encrypts the defender’s data, and

demand a ransom in the amount 𝑅 (this is the attacker’s main decision and we will derive its

equilibrium value below); the game then processes to stage III.
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Defender

Attack

(𝑓𝛾 (𝑊 + 𝑌 ), 0) Attacker

Defender

Recovery(𝑓𝛾 (𝑊 + 𝑌 + 𝑅), 𝑅) (𝑓𝛾 (𝑊 + 𝑌 + 𝐼 ), 0)

(𝑓𝛾 (𝑊 + 𝑌 +𝐶), 0)Defender

(𝑓𝛾 (𝑊 + 𝑌 +𝐶 + 𝑅), 𝑅) (𝑓𝛾 (𝑊 + 𝑌 +𝐶 + 𝐼 ), 0)

Choose𝑊 , 𝑌

Failure (1 − 𝜃 (𝑊 )) Success (𝜃 (𝑊 ))

Choose 𝑅

RecoverPay Destroy

Success (1 − 𝜀 (𝑌 ))Failure (𝜀 (𝑌 ))

Pay Destroy

Fig. 1. The Attacker-Defender (A-D) game tree, with corresponding utilities (𝑈𝑑 , 𝑈𝑎) under each possible
game outcome. Rounded corners indicate the player whose turn it is to move, and ovals indicate stochastic
events (with probabilities written next to each outcome).

Stage III. The defender chooses between (1) paying ransom 𝑅 immediately, (2) not paying ransom,

allowing data to be destroyed, or (3) trying to recover data first. Define𝐴1 ∈ {Pay, Destroy, Recover}
to be the defender’s action in this stage.

• If 𝐴1 = Pay, the game ends with𝑈𝑎 = 𝑅 and𝑈𝑑 = 𝑓𝛾 (𝑊 + 𝑌 + 𝑅).
• If 𝐴1 = Destroy, the game ends with𝑈𝑎 = 0 and𝑈𝑑 = 𝑓𝛾 (𝑊 + 𝑌 + 𝐼 ).
• If𝐴1 = Recover, the defender incurs recovery cost𝐶 > 0 to try to recover data, and the game

proceeds to stage IV. The introduction of 𝐶 captures the cost the defender incurs in delaying

ransom payment while trying to recover their data, such as the cost of business interruption

following an attack until the crisis is resolved.

Stage IV. In this stage the defender attempts to recover data, with a failure probability of 𝜀 (𝑌 ), a
non-increasing and convex function of the backup effort 𝑌 . We will similarly use 𝜀𝑜 = 𝜀 (0) and
𝜀∞ = lim𝑌→∞ 𝜀 (𝑌 ) to denote the failure probability under zero backup effort and the minimum

achievable failure probability, respectively.

• If recovery succeeds, the game ends with𝑈𝑎 = 0 and𝑈𝑑 = 𝑓𝛾 (𝑊 + 𝑌 +𝐶).
• If recovery fails, then the defender can choose to pay the ransom or allow data to be destroyed,

with 𝐴2 ∈ {Pay, Destroy} denoting said action.

– If 𝐴2 = Pay, the game ends with𝑈𝑎 = 𝑅 and𝑈𝑑 = 𝑓𝛾 (𝑊 + 𝑌 +𝐶 + 𝑅).
– If 𝐴2 = Destroy, the game ends with𝑈𝑎 = 0 and𝑈𝑑 = 𝑓𝛾 (𝑊 + 𝑌 +𝐶 + 𝐼 ).
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3.1 Subgame Perfect Equilibrium
Due to the sequential-move nature of the A-D game, our solution concept is the subgame perfect

equilibrium, simply referred to as the equilibrium for short below. Denote by (𝑊 ∗, 𝑌 ∗, 𝐴∗
1
, 𝐴∗

2
) the

defender’s equilibrium strategy, and 𝑅∗
the equilibrium ransom demand. Similarly, we will use the

notation 𝜃 ∗ = 𝜃 (𝑊 ∗) and 𝜀∗ = 𝜀 (𝑌 ∗). Below we analyze the existence, uniqueness, and expression

of the equilibrium solution using backward induction. While the technique is conceptually well

established, its application in this game is quite involved due to the number of stages we need to

consider. We will assume an exponential utility function, i.e., 𝑓𝛾 (𝑥) = −𝑒𝛾𝑥 .
Consider the last two stages of the model. To maximize their utility, the attacker will not demand

a ransom larger than the data value 𝐼 , so as to ensure the defender will not favor destruction over

payment in stages III and IV. Therefore, 𝑅∗ ≤ 𝐼 , 𝐴∗
1
∈ {Pay, Recover}, and 𝐴∗

2
= Pay. In stage III,

the defender compares (1 − 𝜀∗) 𝑓𝛾 (𝑊 ∗ + 𝑌 ∗ +𝐶) + 𝜀∗ 𝑓𝛾 (𝑊 ∗ + 𝑌 ∗ +𝐶 + 𝑅∗) and 𝑓𝛾 (𝑊 ∗ + 𝑌 ∗ + 𝑅∗) to
determine whether to attempt data recovery. Without loss of generality, we assume that in case of

a tie, the defender will pay ransom immediately. Thus we have:

𝐴∗
1
=

{
Pay (1 − 𝜀∗)𝑒𝛾 (𝐶−𝑅∗) + 𝜀∗𝑒𝛾𝐶 ≥ 1,

Recover Otherwise.

In stage II, the attacker solves the following two optimization problems with respect to the

defender’s possible actions.

(a) If 𝐴∗
1
= Pay: The attacker solves the following optimization problem:

𝑅∗
Pay =


max𝑅 𝑅

𝑠.𝑡 . (1 − 𝜀∗)𝑒𝛾 (𝐶−𝑅) + 𝜀∗𝑒𝛾𝐶 ≥ 1,

0 < 𝑅 ≤ 𝐼 .

(1)

(b) If 𝐴∗
1
= Recover: The attacker solves the following problem:

𝑅∗
Recover =


max𝑅 𝑅

𝑠.𝑡 . (1 − 𝜀∗)𝑒𝛾 (𝐶−𝑅) + 𝜀∗𝑒𝛾𝐶 < 1,

0 < 𝑅 ≤ 𝐼 .

(2)

Lemma 3.1. Define 𝜀ℎ = 𝑒𝛾 (𝐼−𝐶 )−1
𝑒𝛾𝐼−1 < 1. Eqn (1) always has a feasible solution. Eqn (2) has a feasible

solution if and only if 𝜀∗ < 𝜀ℎ . Furthermore,

(1) if 𝜀∗ ≥ 𝜀ℎ , then only Eqn (1) has a solution, which is 𝑅∗
Pay = 𝐼 ;

(2) if 𝜀∗ < 𝜀ℎ , both (1) and (2) have one solution, which are 𝑅∗
Pay = 𝐶 + 1

𝛾
log

1−𝜀∗
1−𝜀∗𝑒𝛾𝐶 < 𝐼 and

𝑅∗
Recover = 𝐼 , respectively.

Proof. Note that the left-hand side in the constraints of Eqns (1) and (2) are decreasing in 𝑅,

and the constraint of Eqn (1) holds strictly for 𝑅 = 0 (since 𝛾,𝐶 > 0, thus 𝑒𝛾𝐶 > 1). Therefore, Eqn

(1) always has a feasible solution, while this is not necessarily true for Eqn (2). If the constraint

of Eqn (1) is satisfied for 𝑅 = 𝐼 , which is equivalent to 𝜀∗ ≥ 𝑒𝛾 (𝐼−𝐶 )−1
𝑒𝛾𝐼−1 = 𝜀ℎ , then it also holds for

all 0 < 𝑅 ≤ 𝐼 , therefore 𝑅∗
Pay = 𝐼 and Eqn (2) is infeasible. Otherwise, we can find 0 < 𝑅 < 𝐼 by

solving (1 − 𝜀∗)𝑒𝛾 (𝐶−𝑅) + 𝜀∗𝑒𝛾𝐶 = 1, yielding 𝑅 = 𝐶 + 1

𝛾
log

1−𝜀∗
1−𝜀∗𝑒𝛾𝐶 . Then the constraint of Eqn (1)

holds for 0 < 𝑅 ≤ 𝑅, and the constraint of Eqn (2) holds for 𝑅 < 𝑅 ≤ 𝐼 . Therefore, 𝑅∗
Pay = 𝑅 < 𝐼 and

𝑅∗
Recover = 𝐼 . □

The attacker compares 𝑅∗
Pay and 𝑅∗

Recover (if they both exist) to determine the optimal ransom

amount. Note that in case of a successful attack, the attacker’s expected payout is 𝑅∗
Pay for𝐴

∗
1
= Pay,
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and 𝜀∗𝑅∗
Recover = 𝜀∗𝐼 for 𝐴∗

1
= Recover. Again, without loss of generality, we will assume that in

case of a tie the attacker chooses 𝑅∗
Pay, resulting in 𝐴∗

1
= Pay.

3.2 Main results
If 𝐶 ≥ 𝐼 , then 𝜀ℎ ≤ 0, resulting in a degenerate case where 𝑅∗ = 𝑅∗

Pay = 𝐼 regardless of 𝜀∗. The
following lemma characterizes 𝑅∗

for 𝐶 < 𝐼 .

Theorem 3.2. Assume 𝐶 < 𝐼 , and define 𝑔 : [0, 𝜀ℎ] → R as 𝑔(𝜀) = 𝐶 − 𝜀𝐼 + 1

𝛾
log

1−𝜀
1−𝜀𝑒𝛾𝐶 . Then one

of the following cases applies.
(a) 𝑔(𝜀) has at most a single root in (0, 𝜀ℎ). In this case the attacker will always choose 𝑅∗ = 𝑅∗

Pay.

𝑅∗ = 𝑅∗
Pay =


𝐼 𝜀∗ ≥ 𝜀ℎ,

𝐶 + 1

𝛾
log

1 − 𝜀∗

1 − 𝜀∗𝑒𝛾𝐶
𝜀∗ < 𝜀ℎ .

(3)

(b) 𝑔(𝜀) has two roots 𝜀𝑙 < 𝜀𝑚 in (0, 𝜀ℎ). In this case the attacker will choose 𝑅∗ as follows.

𝑅∗ =


𝑅∗
Pay = 𝐼 𝜀∗ ≥ 𝜀ℎ,

𝑅∗
Pay = 𝐶 + 1

𝛾
log

1 − 𝜀∗

1 − 𝜀∗𝑒𝛾𝐶
𝜀∗ ≤ 𝜀𝑙 or 𝜀𝑚 ≤ 𝜀∗ < 𝜀ℎ,

𝑅∗
Recover = 𝐼 𝜀𝑙 < 𝜀∗ < 𝜀𝑚 .

(4)

Furthermore,𝐶 ≥ 1

𝛾
log(𝛾𝐼 + 1) is a sufficient (but not necessary) condition for ruling out (b), resulting

in 𝑅∗ = 𝑅∗
Pay.

Proof. If 𝜀∗ ≥ 𝜀ℎ , then from Lemma 3.1 only Eqn (1) has a solution and 𝑅∗ = 𝑅∗
Pay = 𝐼 . Otherwise,

for the attacker to choose 𝑅∗
Pay in the equilibrium, we must have 𝑅∗

Pay ≥ 𝜀∗𝑅∗
Recover = 𝜀∗𝐼 , which is

equivalent to 𝑔(𝜀∗) ≥ 0. We have:

𝑔(0) = 𝐶 > 0 ,

𝑔(𝜀ℎ) = (1 − 𝜀ℎ)𝐼 > 0 ,

𝑔′(𝜀) = 1

𝛾 (𝑒−𝛾𝐶 − 𝜀)
− 1

𝛾 (1 − 𝜀) − 𝐼 ,

𝑔′′(𝜀) = 1

𝛾 (𝑒−𝛾𝐶 − 𝜀)2
− 1

𝛾 (1 − 𝜀)2 > 0 ,

where we have used the fact that 0 ≤ 𝜀 ≤ 𝜀ℎ = 𝑒𝛾 (𝐼−𝐶 )−1
𝑒𝛾𝐼−1 ⇒ 0 < 1−𝑒−𝛾𝐶

𝑒𝛾𝐼−1 ≤ 𝑒−𝛾𝐶 − 𝜀 < 1 − 𝜀. Since

𝑔(𝜀) is strictly convex and positive for both ends of the range [0, 𝜀ℎ], then one of the following

must be true.

• 𝑔(𝜀) has at most a single root in (0, 𝜀ℎ), and is therefore non-negative for all 0 ≤ 𝜀 < 𝜀ℎ . Then

the attacker will always choose 𝑅∗ = 𝑅∗
Pay, resulting in case (a).

• 𝑔(𝜀) has two roots 𝜀𝑙 , 𝜀𝑚 in (0, 𝜀ℎ). Assume 𝜀𝑙 < 𝜀𝑚 , then 𝑔(𝜀) is only negative for 𝜀𝑙 < 𝜀 < 𝜀𝑚 .

The attacker will choose 𝑅∗ = 𝑅∗
Recover for 𝜀𝑙 < 𝜀 < 𝜀𝑚 , and 𝑅

∗ = 𝑅∗
Pay otherwise; this results

in case (b).

Finally, If 𝑔′(0) = 𝑒𝛾𝐶−1
𝛾

− 𝐼 ≥ 0 ⇔ 𝐶 ≥ 1

𝛾
log(1 + 𝛾𝐼 ), then 𝑔 is non-decreasing, and therefore

positive, for all 0 ≤ 𝜀 < 𝜀ℎ , resulting in case (a). □

At stage I the defender determines𝑊 ∗
and 𝑌 ∗

as follows.

𝑊 ∗, 𝑌 ∗ = argmin

𝑊,𝑌 ≥0

{(
1 − 𝜃 (𝑊 ) + 𝜃 (𝑊 )min

{
(1 − 𝜀 (𝑌 ))𝑒𝛾𝐶 + 𝜀 (𝑌 )𝑒𝛾 (𝐶+𝑅∗) , 𝑒𝛾𝑅

∗
})

𝑒𝛾 (𝑊 +𝑌 )
}
. (5)



Deterrence, Backup, or Insurance: A Game-Theoretic Analysis of Ransomware 9

The equilibrium can then be found by finding the solution to Eqn (5) and either (3) or (4),

depending on the number of roots of 𝑔(𝜀) in (0, 𝜀ℎ). Using Theorem 3.1, we define the follow subsets

of R≥0: S1 = {𝑌 ≥ 0 : 𝑅∗ = 𝑅∗
Pay = 𝐼 }, S2 = {𝑌 ≥ 0 : 𝑅∗ = 𝑅∗

Pay < 𝐼 }, and S3 = {𝑌 ≥ 0 : 𝑅∗ =

𝑅∗
Recover = 𝐼 }. Note that depending on the values for 𝜀𝑜 and 𝜀∞, any, but not all, of these subspaces

might be empty. Both S1 and S3 are either the empty set or a (open or closed) interval. S2 is either

empty, a single interval, or the union of two intervals. The equilibrium of the A-D game satisfies

one of the following cases.

(a) 𝑅∗ = 𝑅∗
Pay = 𝐼 , 𝑌 ∗ = 0 ∈ S1, and𝑊

∗ = argmin𝑊 ≥0
{(
1 + 𝜃 (𝑊 ) (𝑒𝛾𝐼 − 1)

)
𝑒𝛾𝑊

}
.

(b) 𝐶 ≤ 𝑅∗ = 𝑅∗
Pay = 𝐶 + 1

𝛾
log

1−𝜀∗
1−𝜀∗𝑒𝛾𝐶 < 𝐼 (with 𝜀∗ = 𝜀 (𝑌 ∗) given from below) and

𝑊 ∗, 𝑌 ∗ = argmin

𝑊 ≥0,𝑌 ∈S2

{(
1 + 𝜃 (𝑊 )

(
𝑒𝛾𝐶

1 − 𝜀 (𝑌 )
1 − 𝜀 (𝑌 )𝑒𝛾𝐶

− 1

))
𝑒𝛾 (𝑊 +𝑌 )

}
.

(c) 𝐶 ≤ 𝑅∗ = 𝑅∗
Recover = 𝐼 and

𝑊 ∗, 𝑌 ∗ = argmin

𝑊 ≥0,𝑌 ∈S3

{(
1 + 𝜃 (𝑊 )

((
1 + 𝜀 (𝑌 ) (𝑒𝛾𝐼 − 1)

)
𝑒𝛾𝐶 − 1

))
𝑒𝛾 (𝑊 +𝑌 )

}
.

Note that in the first case we are using the fact that 𝑈𝑑 = −
(
1 + 𝜃 (𝑊 ) (𝑒𝛾𝐼 − 1)

)
𝑒𝛾 (𝑊 +𝑌 )

, and

therefore the optimal backup effort is zero. The defender can solve each case separately, and choose

the equilibrium with the largest utility.

3.3 Discussion
In general, a high recovery cost 𝐶 discourages the defender from making a recovery attempt

and encourages the attacker to demand the highest ransom 𝑅∗ = 𝐼 . The only way (in the non-

degenerate case) for the defender to induce a lower ransom (< 𝐼 ) is to exert sufficiently high backup

effort 𝑌 so as to satisfy 𝜀 (𝑌 ) < 𝜀ℎ ; this acts as a credible threat to discourage high ransom, an

observation that does not appear to have been noted in prior works. Note, however, that even in

this scenario the lower ransom is only true when accompanied by the defender’s equilibrium action

to pay immediately; in other words, the discounted ransom amount is offered in exchange for not

attempting recovery. When the defender’s action is to try and recover data first, the attacker again

demands the highest ransom, a logical choice as the defender has no option but to pay ransom if

their recovery attempt fails. Theorem 3.2 further shows that 𝐶 ≥ 1

𝛾
log(1 + 𝛾𝐼 ) ensures that the

defender will always favor ransom payment over recovery. Since
1

𝛾
log(1 + 𝛾𝐼 ) is decreasing in 𝛾 , a

more risk-averse defender is more likely to pay ransom instead of attempting recovery; a point that

we also observe in our numerical experiments. Theorem 3.2 also suggests that the highest backup

efforts (resulting in 𝜀∗ < 𝜀𝑙 ) are not used directly, but are leveraged to force the attacker to lower

their ransom demand for immediate payment, another observation seen in our numerical results in

Section 5.

The fact that𝑊 plays no part in the attacker’s decision is easily explained, since the attacker’s

decision on 𝑅 is made after the attack has succeeded, which is conditioned on whatever value𝑊 is.

However,𝑊 does play a role by providing general protection against attacks, and reducing the

attacker’s expected payout.

4 THE DEFENDER-INSURER (D-I) MODEL
Now consider the contract between the defender and an insurer providing ransomware insurance.

Strictly speaking, this is a two-stage game (more commonly known as a Stackelberg game with

a leader and a follower [29]), where the insurer (the leader) sets the format of the contract (what

and how contract parameters are to be determined depending on the defender’s actions) and
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the defender best responds, which then determine the contract terms. This is formulated as a

complete information game between the two, thus eliminating typical issues caused by information

asymmetry (unobservable actions can worsen moral hazard, and unobservable types lead to adverse

selection). This simplification is a first step toward understanding the role insurance plays in the

specific case of ransomware attacks; the basic model can then be extended to include the more

general issue of information asymmetry.

As mentioned earlier, in the D-I game we shall model the attacker as a non-strategic third party,

whose likelihood of success and subsequent ransom demand are input to the D-I model. In doing

so we treat the ransomware attack as a constant existence, which is in accordance with the fact

that many such attacks are non-targeted with a generic ransom amount set based on empirical

and market knowledge rather than on individual victims’ specific information; such an attacker is

also effectively agnostic of whether a given victim has ransomware insurance. We will also use the

A-D game to obtain the defender’s option outside the insurance contract: 𝑢𝑜 = E[𝑈 ∗
𝑑
] denotes the

defender’s equilibrium expected utility outside the contract.

Similar to the A-D game, the defender has two actions prior to an attack: deterrence (𝑊 ) and

backup (𝑌 ); and two actions post a successful attack with probability 𝜃 (𝑊 ): try to recover data

(and possibly pay if recovery fails with probability 𝜀 (𝑌 )) and pay immediately.

We will again assume an exponential form for the defender’s utility function, i.e.,𝑈𝑑 = 𝑓𝛾 (𝑥) =
−𝑒𝛾𝑥 , where 𝑥 is the total cost borne by the defender, including the cost of effort, insurance and

ransom, less coverage.

To capture all of the above, we will assume a linear insurance contract that consists of the tuple

(0 ≤ 𝑝, 0 < 𝑎, 𝑏 ≤ 1, 0 ≤ 𝑧, 𝜏 ≤ 1) and detailed below:

• 𝑝 ≥ 0 is the premium the defender pays the insurer for the contact.

• 𝑎 and 𝑏 characterize the defender’s fraction of efforts after the insurer subsidizes for𝑊,𝑌 ,

respectively; in other words, the actual cost of the effort of the defender are 𝑎𝑊 and 𝑏𝑌 with

the insurer returning (1 − 𝑎)𝑊 and (1 − 𝑏)𝑌 to the defender as discounts on the premium.

Note that neither 𝑎 nor 𝑏 can be 0 (i.e., the insurer cannot subsidize 100% of the effort), for

otherwise the defender will seek infinite𝑊,𝑌 , respectively. Accordingly, we will define small

𝑎 and 𝑏 that bound 𝑎 and 𝑏 away from 0, respectively.

• Upon a successful attack, if the defender decides to recover data first, then the insurer will

cover 1 − 𝑧 fraction of the total loss; this loss consists of the defender’s recovery cost if

recovery is successful, or the recovery cost plus the ransom if recovery fails.

• If the defender decides to pay immediately, then the insurer covers 1 − 𝜏 fraction of the

ransom.

As can be seen, we are affording the insurer multiple options and significant flexibility in

designing the insurance contract; this is intended to help us understand questions such as whether

the insurer would incentivize deterrence and backup efforts differently, or whether it is in the

insurer’s interest to incentivize recovery and discourage immediate payment by offering a low 𝑧,

and so on. The defender’s utilities under all possible actions and outcomes in this D-I game are

illustrated in Figure 2.

Define 𝑈 𝑖𝑛
𝑑

to be the defender’s utility inside a cyber insurance contract. Then the expected

utility E[𝑈 𝑖𝑛
𝑑
] can be written as

E[𝑈 𝑖𝑛
𝑑
] =

(
1 − 𝜃 (𝑊 ) + 𝜃 (𝑊 )min

{
(1 − 𝜀 (𝑌 ))𝑒𝛾𝑧𝐶 + 𝜀 (𝑌 )𝑒𝛾𝑧 (𝐶+𝑅) , 𝑒𝛾𝜏𝑅

})
𝑒𝛾 (𝑝+𝑎𝑊 +𝑏𝑌 ) .

Define𝑈 to be the insurer’s utility. Consider the indicator F = 1{ (1−𝜀 (𝑌 ))𝑒𝛾𝑧𝐶+𝜀 (𝑌 )𝑒𝛾𝑧 (𝐶+𝑅) ≥𝑒𝛾𝜏𝑅} ,
with F = 1 indicating that the defender will choose to pay immediately (𝐴1 = Pay) and 0 otherwise

(𝐴1 = Recover). Then the insurer’s expected utility is affected by the premium, the effort subsidies,
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Insurer

Defender

Attack

𝑓𝛾 (𝑝 + 𝑎𝑊 + 𝑏𝑌 ) Defender

Recovery 𝑓𝛾 (𝑝 + 𝑎𝑊 + 𝑏𝑌 + 𝜏𝑅)

𝑓𝛾 (𝑝 + 𝑎𝑊 + 𝑏𝑌 + 𝑧𝐶) Defender

𝑓𝛾 (𝑝 + 𝑎𝑊 + 𝑏𝑌 + 𝑧 (𝐶 + 𝑅))

Choose (𝑎, 𝑏, 𝑧, 𝜏, 𝑝)

Choose𝑊 , 𝑌

Failure (1 − 𝜃 (𝑊 )) Success (𝜃 (𝑊 ))

Recover Pay

Success (1 − 𝜀 (𝑌 )) Failure (𝜀 (𝑌 ))

Pay

Fig. 2. The Defender-Insurer (D-I) game tree, with corresponding utility of the defender 𝑈 𝑖𝑛
𝑑

under each
possible game outcome. Rounded corners indicate the player whose turn it is to move, and ovals indicate
stochastic events (with probabilities written next to each outcome). Note that the defender’s actions are not
in response to the insurer in the D-I game, but rather actions they would take against an attack; while these
actions are not part of the D-I game, they must be anticipated in order to compute the actions (𝑊,𝑌 ).

as well as the loss, and can be written as

E[𝑈 ] = 𝑝 − (1 − 𝑎)𝑊 − (1 − 𝑏)𝑌 − F · 𝜃 (𝑊 ) (1 − 𝑧) (𝐶 + 𝜀 (𝑌 )𝑅) − (1 − F) · 𝜃 (𝑊 ) (1 − 𝜏)𝑅 .

4.1 Subgame Perfect Equilibrium
As mentioned earlier, the D-I game is also a sequential-move game that involves two stages. Below

we detail the backward induction process we use to find a subgame perfect equilibrium. Denote

by (𝑝∗, 𝑎∗, 𝑏∗, 𝑧∗, 𝜏∗) the insurer’s equilibrium strategy, and (𝑊 ∗, 𝑌 ∗) the defender’s. Formally, the

subgame perfect equilibrium is the solution to the following optimization problem.

argmax

𝑊,𝑌,𝑝,𝑎,𝑏,𝑧,𝜏

𝑝 − (1 − 𝑎)𝑊 − (1 − 𝑏)𝑌 − F𝜃 (𝑊 ) (1 − 𝑧) (𝐶 + 𝜀 (𝑌 )𝑅) − (1 − F)𝜃 (𝑊 ) (1 − 𝜏)𝑅

𝑠.𝑡 . E[𝑈 𝑖𝑛] ≥ 𝑢𝑜 , (6)

𝑊,𝑌 ∈ argmax

𝑊,𝑌 ≥0
E[𝑈 𝑖𝑛] , (7)

𝑝 ≥ 0, 𝑎 ≤ 𝑎 ≤ 1, 𝑏 ≤ 𝑏 ≤ 1, 0 ≤ 𝑧, 𝜏 ≤ 1 .

Recall 𝑢𝑜 = E[𝑈 ∗
𝑑
] is the equilibrium expected utility of the defender outside the contract, i.e.,

from the previous A-D game presented in Section 3. Here the first constraint (6) ensures individual

rationality, i.e., the defender will only enter into the contract if it does not lower their expected
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utility. The second constraint (7) ensures incentive compatibility, i.e., given the contract terms the

defender is going to take actions𝑊,𝑌 to maximize self-interest. It’s not hard to verify the above

problem is always feasible.

Lemma 4.1. At the equilibrium, 𝑝∗ can be expressed as

𝑝∗ =
1

𝛾
log

−𝑢𝑜(
1 − 𝜃 (𝑊 ∗) + 𝜃 (𝑊 ∗)min

{
(1 − 𝜀 (𝑌 ∗))𝑒𝛾𝑧∗𝐶 + 𝜀 (𝑌 ∗)𝑒𝛾𝑧∗ (𝐶+𝑅) , 𝑒𝛾𝜏∗𝑅

})
𝑒𝛾 (𝑎∗𝑊 ∗+𝑏∗𝑌 ∗) .

This is easy to see because at the equilibrium the defender must be indifferent between purchasing

and not purchasing the contract (otherwise the insurer can always adjust the premium by the right

amount so that equality E[𝑈 𝑖𝑛
𝑑
] = 𝑢𝑜 is attained while increasing the insurer’s utility). Therefore,

𝑝∗ can be computed by setting equality in Eqn (6), yielding the expression above.

In the first stage of this two-stage D-I game, the insurer solves the following two sub-problems

that correspond to the defender’s possible actions (pay or recover) in the event an attack is successful.

(a) 𝐴1 = Pay. The following optimization problem yields equilibrium actions by both the defender

and the insurer, denoted by (𝑊1, 𝑌1, 𝑎1, 𝑏1, 𝑧1, 𝜏1), if the defender chooses to pay immediately:

argmax

𝑊,𝑌,𝑎,𝑏,𝑧,𝜏

1

𝛾
log

(
−𝑢𝑜

1 − 𝜃 (𝑊 ) + 𝜃 (𝑊 )𝑒𝛾𝜏𝑅

)
−𝑊 − 𝑌 − 𝜃 (𝑊 ) (1 − 𝜏)𝑅 (8)

𝑠 .𝑡 . 𝑊 ,𝑌 ∈ argmin

𝑊,𝑌 ≥0

{(
1 − 𝜃 (𝑊 ) + 𝜃 (𝑊 )𝑒𝛾𝜏𝑅

)
𝑒𝛾 (𝑎𝑊 +𝑏𝑌 )

}
,

(1 − 𝜀 (𝑌 ))𝑒𝛾𝑧𝐶 + 𝜀 (𝑌 )𝑒𝛾𝑧 (𝐶+𝑅) ≥ 𝑒𝛾𝜏𝑅,

𝑎 ≤ 𝑎 ≤ 1, 𝑏 ≤ 𝑏 ≤ 1, 0 ≤ 𝑧, 𝜏 ≤ 1.

(b) 𝐴1 = Recover. The following optimization problem yields equilibrium actions by both the

defender and the insurer, denoted by (𝑊2, 𝑌2, 𝑎2, 𝑏2, 𝑧2, 𝜏2), if the defender chooses to recover

data first:

argmax

𝑊,𝑌,𝑎,𝑏,𝑧,𝜏

1

𝛾
log

(
−𝑢𝑜

1 − 𝜃 (𝑊 ) + 𝜃 (𝑊 ) (1 − 𝜀 (𝑌 ))𝑒𝛾𝑧𝐶 + 𝜃 (𝑊 )𝜀 (𝑌 )𝑒𝛾𝑧 (𝐶+𝑅)

)
(9)

−𝑊 − 𝑌 − 𝜃 (1 − 𝑧) (𝐶 + 𝜀 (𝑌 )𝑅)
𝑠 .𝑡 . 𝑊 ,𝑌 ∈ argmin

𝑊,𝑌 ≥0

{(
1 − 𝜃 (𝑊 ) + 𝜃 (𝑊 ) (1 − 𝜀 (𝑌 ))𝑒𝛾𝑧𝐶 + 𝜃 (𝑊 )𝜀 (𝑌 )𝑒𝛾𝑧 (𝐶+𝑅)

)
𝑒𝛾 (𝑎𝑊 +𝑏𝑌 )

}
,

(1 − 𝜀 (𝑌 ))𝑒𝛾𝑧𝐶 + 𝜀 (𝑌 )𝑒𝛾𝑧 (𝐶+𝑅) < 𝑒𝛾𝜏𝑅,

𝑎 ≤ 𝑎 ≤ 1, 𝑏 ≤ 𝑏 ≤ 1, 0 ≤ 𝑧, 𝜏 ≤ 1.

Lemma 4.2. Both Problem (8) and Problem (9) always have feasible solutions.

Proof. Consider Problem (8), take 𝜏 = 0, 𝑧 = 1, 𝑎 = 1, 𝑏 = 1. We can verify the second constraint

holds:

(1 − 𝜀 (𝑌 ))𝑒𝛾𝑧𝐶 + 𝜀 (𝑌 )𝑒𝛾𝑧 (𝐶+𝑅) = (1 − 𝜀 (𝑌 ))𝑒𝛾𝐶 + 𝜀 (𝑌 )𝑒𝛾 (𝐶+𝑅)

≥(1 − 𝜀 (𝑌 ))𝑒𝛾𝐶 + 𝜀 (𝑌 )𝑒𝛾𝐶 = 𝑒𝛾𝐶 ≥ 1 = 𝑒𝛾𝜏𝑅 .

Obtain (𝑊,𝑌 ) from the first constraint, and we find a feasible solution (𝑊,𝑌, 𝑎, 𝑏, 𝑧, 𝜏). Similarly,

for Problem (9), we take 𝑧 = 0, 𝜏 = 1, 𝑎 = 1, 𝑏 = 1, and derive (𝑊,𝑌 ) from the first constraint. It

can be easily verified that this (𝑊,𝑌, 𝑎, 𝑏, 𝑧, 𝜏) is a feasible solution. □

The way the insurer solves their optimzation problem is to compare the solutions to the above

two sub-problems, E[𝑈 (𝑝1,𝑊1, 𝑌1, 𝑎1, 𝑏1, 𝑧1, 𝜏1)] and E[𝑈 (𝑝2,𝑊2, 𝑌2, 𝑎2, 𝑏2, 𝑧2, 𝜏2)]; whichever yields
higher utility value is the course of action (i.e., pay vs. recover) that the insurer wants to induce
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the defender to take in the event of an attack. This decision then dictates the optimal contract

(𝑝∗, 𝑎∗, 𝑏∗, 𝑧∗, 𝜏∗). This is then presented to the defender. Since these contract terms are jointly

optimal with the defender’s actions𝑊 ∗, 𝑌 ∗
with respect to the defender’s utility𝑈 𝑖𝑛

𝑑
, the defender

best responds with the intended𝑊 ∗, 𝑌 ∗
for the intended choice (pay vs. recover). This is how the

subgame equilibrium is arrived at.

While existence is clear, we have not established uniqueness of the equilibrium. To compute

the equilibrium unambiguously, we will assume the following tie-breaking rules without loss of

generality: In the event the two sub-problems yield the same utility for the insurer, they will choose

(𝑝∗, 𝑎∗, 𝑏∗, 𝑧∗, 𝜏∗) = (𝑝1, 𝑎1, 𝑏1, 𝑧1, 𝜏1), resulting in 𝐴∗
1
= Pay and𝑊 ∗ = 𝑊1, 𝑌

∗ = 𝑌1. Note that the

two sub-problems cannot yield identical tuples as optimal solutions; this is because the second

constraints in the two are mutually exclusive under the same 𝑌 . In addition, if two or more contract

parameter tuples yield the same utility in the same sub-problem, the insurer breaks the tie by

choosing the one with the highest parameter value in the order (𝑎, 𝑏, 𝑧, 𝜏, 𝑝), i.e., selecting the one(s)
with the highest 𝑎, and of those still tied, selecting the one(s) with the highest 𝑏, and so on.

4.2 Main results
While we don’t have closed-form solutions to the above problem, below are a few results that

provide some partial characterizations of the equilibrium solution. These properties prove very

helpful in our numerical experiments presented in Section 5 as they drastically simplify the solution

space. Here we assume an exponential form of 𝜃 (𝑊 ) = 𝜃𝑜𝑒
−𝜆𝑊

and 𝜀 (𝑌 ) = 𝜀𝑜𝑒
−𝜇𝑌

.

Proposition 4.3. For the sub-problem in Eqn (8), the optimal efforts (𝑊1, 𝑌1) is given by

𝑌1 = 0,𝑊1 =

 0 𝑎1 ≥ 𝜆 (𝑒𝛾𝜏1𝑅−1)𝜃𝑜
𝛾 (1+(𝑒𝛾𝜏1𝑅−1)𝜃𝑜 )

1

𝜆
log

(𝜆−𝛾𝑎1) (𝑒𝛾𝜏1𝑅−1)𝜃𝑜
𝛾𝑎1

otherwise
.

Further, for special case 𝜃𝑜 = 1 (always being successfully attacked if doing nothing in deter-
rence), and 𝑅 = 𝐼 (ransom demand is at its maximum), then 𝑎1 <

𝜆 (𝑒𝛾𝜏1𝑅−1)𝜃𝑜
𝛾 (1+(𝑒𝛾𝜏1𝑅−1)𝜃𝑜 )

, meaning𝑊1 =

1

𝜆
log

(𝜆−𝛾𝑎1) (𝑒𝛾𝜏1𝑅−1)𝜃𝑜
𝛾𝑎1

, i.e., the deterrence effort is strictly positive.

Proof. For the first sub-problem, in inspecting the constrains we see𝑊 and 𝑌 can be optimized

separately. The only constraint on 𝑌 is 𝑌 ≥ 0, thus the optimal value is 0. The constraint then

becomes𝑊 ∈ argmin

{
(1 − 𝜃 )𝑒𝛾𝑎𝑊 + 𝜃𝑒𝛾 (𝑎𝑊 +𝜏𝑅)}

. Solving it gives us the expression given in the

theorem.

If 𝑅 = 𝐼 , we show that𝑊1 = 0, 𝑌1 = 0 will result in the insurer’s utility E[𝑈1] ≤ 0.

First we show that at the equilibrium of the A-D game, 𝑢𝑜 is lower bounded by −(1 − 𝜃𝑜 + 𝜃𝑜𝑒𝛾𝐼 ).
Consider the case where 𝑊 = 𝑌 = 0 and 𝐴1 = Pay. Then the defender’s expected utility is

E[𝑈𝑑 ] = −(1−𝜃𝑜 +𝜃𝑜𝑒𝛾𝑅) ≥ −(1−𝜃𝑜 +𝜃𝑜𝑒𝛾𝐼 ). Therefore at the equilibrium, 𝑢𝑜 ≥ −(1−𝜃𝑜 +𝜃𝑜𝑒𝛾𝐼 )
must hold, otherwise the defender can move to𝑊 = 𝑌 = 0, and 𝐴1 = Pay to achieve a higher utility
(note that the defender moves first in the game).

Return to the D-I game, with𝑊1, 𝑌1 = 0 we have

E[𝑈1] =
1

𝛾
log

−𝑢𝑜
1 − 𝜃𝑜 + 𝜃𝑜𝑒𝛾𝜏𝑅

− 𝜃𝑜 (1 − 𝜏)𝑅

≤ 1

𝛾
log( −𝑢𝑜

𝑒𝜃𝑜𝛾𝜏𝑅
) − 𝜃𝑜 (1 − 𝜏)𝑅

≤ 1

𝛾
log(1 − 𝜃𝑜 + 𝜃𝑜𝑒𝛾𝐼 ) − 𝜃𝑜 𝐼
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When 𝜃𝑜 = 1 the upper bound is non-positive. Thus to ensure there’s a market, we must have

𝑊1 =
1

𝜆
log

(𝜆−𝛾𝑎1) (𝑒𝛾𝜏1𝑅−1)𝜃𝑜
𝛾𝑎1

. □

Proposition 4.4. For the sub-problem in Eqn (9), the optimal efforts (𝑊2, 𝑌2) can be characterized
as follows depending on the values of 𝑎2 and 𝑏2:

• If 𝑎2 ≥ 𝜆
𝛾
, 𝑏2 ≥ 𝜇

𝛾
, then𝑊2 = 𝑌2 = 0;

• If 𝑎2 ≥ 𝜆
𝛾
, 𝑏2 <

𝜇

𝛾
, then𝑊2 = 0, and

𝑌2 =


0 𝑏2 ≥ 𝜇

𝛾
1

1+ 1−𝜃𝑜 +𝜃𝑜𝑒𝛾𝑧2𝐶

𝜃𝑜𝜀𝑜𝑒
𝛾𝑧

2
𝐶 (𝑒𝛾𝑧2𝑅−1)

1

𝜇
log

𝜃𝑜𝜀𝑜 (𝑒𝛾𝑧2 (𝐶+𝑅)−𝑒𝛾𝑧2𝐶 ) (𝜇−𝛾𝑏2)
𝛾𝑏2 (1−𝜃𝑜+𝜃𝑜𝑒𝛾𝑧2𝐶 )

otherwise
;

• If 𝑎2 < 𝜆
𝛾
, 𝑏2 ≥ 𝜇

𝛾
, then 𝑌2 = 0, and

𝑊2 =

 0 𝑎2 ≥ 𝜆
𝛾

(
1 − 1

1+𝜃𝑜 (𝜀𝑜𝑒𝛾𝑧2 (𝐶+𝑅)+(1−𝜀𝑜 )𝑒𝛾𝑧2𝐶−1)

)
1

𝜆
log

(𝜆−𝛾𝑎2)𝜃𝑜
𝛾𝑎2

(
𝜀𝑜𝑒

𝛾𝑧2 (𝐶+𝑅) + (1 − 𝜀𝑜 )𝑒𝛾𝑧2𝐶 − 1

)
otherwise

;

• If 𝑎2 < 𝜆
𝛾
, 𝑏2 <

𝜇

𝛾
, then

𝑊2, 𝑌2 ∈ argmin

𝑊 ≥0,𝑌 ≥0

{
𝑒𝛾𝑎𝑊 +𝛾𝑏𝑌 + 𝜃𝑜 (𝑒𝛾𝑧𝐶 − 1)𝑒 (𝛾𝑎−𝜆)𝑊 +𝛾𝑏𝑌 + 𝜃𝑜𝜀𝑜𝑒𝛾𝑧𝐶 (𝑒𝛾𝑧𝑅 − 1)𝑒 (𝛾𝑎−𝜆)𝑊 +(𝛾𝑏−𝜇)𝑌

}
.

Proof. The expected utility of the defender in this case can be simplified.

E[𝑈 𝑖𝑛
𝑑
] = 𝑒𝛾 (𝑎𝑊 +𝑏𝑌 ) + 𝜃𝑜 (𝑒𝛾𝑧𝐶 − 1)𝑒 (𝛾𝑎−𝜆)𝑊 +𝛾𝑏𝑌 + 𝜃𝑜𝜀𝑜𝑒𝛾𝑧𝐶 (𝑒𝛾𝑧𝑅 − 1)𝑒 (𝛾𝑎−𝜆)𝑊 +(𝛾𝑏−𝜇)𝑌 .

It’s not hard to verify that when 𝛾𝑎 ≥ 𝜆, then𝑊2 = 0, since the first term is strictly increasing while

the last two are non-decreasing with𝑊 . Similarly, 𝛾𝑏 ≥ 𝜇 will ensure 𝑌2 = 0. When𝑊2 = 0, the

optimal 𝑌2 = argmin𝑌 ≥0{𝑒𝛾𝑏𝑌 + 𝜃𝑜 (𝑒𝛾𝑧𝐶 − 1)𝑒𝛾𝑏𝑌 + 𝜃𝑜𝜀𝑜𝑒
𝛾𝑧𝐶 (𝑒𝛾𝑧𝑅 − 1)𝑒 (𝛾𝑏−𝜇)𝑌 }. Solving it yields

the closed form of 𝑌2. Similarly when 𝑌2 = 0, we can also get a closed form for𝑊2. □

Note that, in the last case of Proposition 4.4, the closed form of (𝑊2, 𝑌2) is not presented, however
using KKT conditions [30] we can numerically solve the problem efficiently.

Finally, we can also bound the insurer’s maximum possible utility.

Proposition 4.5. At the equilibrium, the expected utility of the insurer is upper bounded by
1

𝛾
log(−𝑢𝑜 ).

Proof.

E[𝑈 ] = 𝑝 − (1 − 𝑎)𝑊 − (1 − 𝑏)𝑌 − F · 𝜃 (𝑊 ) (1 − 𝑧) (𝐶 + 𝜀 (𝑌 )𝑅) − (1 − F) · 𝜃 (𝑊 ) (1 − 𝜏)𝑅

≤ 𝑝 ≤ 1

𝛾
log(−𝑢𝑜 ) ,

where the last two inequalities come from Lemma 4.1. □

5 NUMERICAL EVALUATION
To further analyze the A-D and D-I games, in this section we will examine and visualize the

equilibria of these games using numerical simulations. We will assume an exponential form for

𝜃 (𝑊 ) and 𝜀 (𝑌 ), i.e., 𝜃 (𝑊 ) = 𝜃𝑜𝑒
−𝜆𝑊

and 𝜀 (𝑌 ) = 𝜀𝑜𝑒
−𝜇𝑌

. We also set 𝐼 = 1 for our experiments,

therefore computed costs/rewards in this section are all relative to the data value.
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(a) 𝜃 (𝑊 ) = 0.5𝑒−10𝑊 ,
𝜀 (𝑌 ) = 0.9𝑒−10𝑌 .
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(b) 𝜃 (𝑊 ) = 0.5𝑒−5𝑊 ,
𝜀 (𝑌 ) = 0.9𝑒−10𝑌 .
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(c) 𝜃 (𝑊 ) = 0.5𝑒−10𝑊 ,
𝜀 (𝑌 ) = 0.9𝑒−5𝑌 .

Fig. 3. Equilibrium strategies (𝑊 ∗, 𝑌 ∗, 𝑅∗) of the A-D game plotted as a function of 𝐶 and 𝛾 . We use 𝐼 = 1 for
all simulations.

5.1 A-D model
To visualize how the equilibrium strategies of the attacker and the defender change with respect to

the recovery cost 𝐶 and risk attitude 𝛾 , we compute and plot𝑊 ∗
, 𝑌 ∗

, and 𝑅∗
as a function of these

parameters. Figure 3 displays our results, where we have generated plots using different 𝜃 (𝑊 )
and 𝜀 (𝑌 ). The first column in Figure 3 shows the equilibrium strategies for 𝜃 (𝑊 ) = 0.5𝑒−10𝑊 and

𝜀 (𝑌 ) = 0.9𝑒−10𝑌 . In the second column we alter 𝜃 (𝑊 ) to be less effective by setting 𝜃 (𝑊 ) = 0.5𝑒−5𝑊 .

Alternatively, in the third column we assume that backup is less effective by setting 𝜃 (𝑌 ) = 0.9𝑒−5𝑌 .
As discussed in Section 3, we can divide the game parameters into three regions depending on the

equilibrium strategy types they support. On the left-side of each figure (low𝐶) the attacker chooses

𝑅∗ = 𝐼 , while the defender will attempt recovery before paying the ransom. On the right-side of

each figure (high 𝐶) the attacker will again choose 𝑅∗ = 𝐼 , while the defender will pay the ransom

immediately. In the region between these two, the attacker will lower the ransom to ensure that the

defender will pay without attempting recovery. While both 𝛾 and 𝐶 play a role in determining the
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type of the equilibrium, we observe that 𝐶 is the main driver. An increasing 𝐶 forces the defender

to shift from attempting recovery to paying ransom immediately. Note that Laszka et al. [10] derive

a similar result with respect to the unit cost of backup in their model.

In the high recovery cost region, the backup effort is abandoned as discussed in Section 3, and

the defender has to rely on deterrence effort to lower the expected loss. Interestingly, however, in

the other two regions, the attacker seems to favor one type of defense over the other, with one of

𝑊 ∗
or 𝑌 ∗

being low. We also observe that a more effective backup effort relative to the deterrence

effort (the second column in Figure 3) seems to expand the middle region.

Another interesting observation is that, in the middle region, though the defender pays ransom

immediately (backup is not used), backup effort is still made (and is significantly higher than

deterrence effort in the first and the second columns). As mentioned earlier, in this case backup

is used as a credible threat to the attacker to lower the ransom. It is indeed noteworthy that the

highest backup effort occurs in this region: when the defender has invested the most in backup

effort, they will also choose to pay immediately. This observation is supported by Theorem 3.2,

where 𝜀∗ < 𝜀𝑙 is followed by accepting a lower ransom.

Though 𝐶 is the main driver, a larger 𝛾 enlarges the width of the middle region, meaning that a

more risk-averse defender is more willing to accept the attacker’s low ransom compromise. A large

𝛾 also shrinks (and in some cases completely eliminates) the recovery region.

5.2 D-I model
We also visualize the equilibrium of the D-I game in Figure 4, using the same parameters as Figure

3. We shall assume that the attacker acts according to the equilibrium of the A-D game, i.e., the

ransom amount at each point is equal to what is presented in Figure 3.

Comparing the two games, we observe that the recovery region remains roughly the same,

which means the defender basically keeps the original decision making regardless of the contract.

However, the defender’s efforts are very different. The defender will almost always abandon the

backup effort under insurance, while the deterrence effort is reduced but positive as compared

to the equilibrium of the A-D game. While the presence of moral hazard is not surprising, it is

interesting to see that it affects the backup effort more drastically than the deterrence effort. An

explanation for this is that the deterrence effort controls the overall probability of a successful

attack, while the backup effort only affects the expected loss when going down the recovery path.

Therefore, the latter has a smaller effect on the overall loss, and is abandoned first in the presence

of insurance; this is compounded by the fact that the attacker is non-strategic in the D-I game, a

consequence of which is that the backup effort cannot be used as a credible threat, unlike in the

A-D game.

On the insurer’s utility, we first observe that it is positive in almost all cases. In particular, for

large 𝛾 , it is nearly half of the data value in some cases, clearly demonstrating the existence of such

a market for insurance. Note that the optimal 𝑎∗, 𝑏∗ are at the minimum values 𝑎 and 𝑏, respectively,

with 𝜏∗ = 0 for the pay region, and 𝑧∗ = 0 for the recovery region. These values suggest that the

defender essentially only pays the premium, while the costs of effort and losses from a successful

attack are all but completely covered by the insurer.

In addition, with the introduction of insurance, the attacker gains a slightly higher payout due

the reduction of the defender’s effort. Note that the defender’s utility remains the same inside and

outside of the contract. This means that the attacker is essentially cutting into the insurer’s potential

profit. Nevertheless, the insurer is still making a profit by taking advantage of the defender’s risk

aversion, with their profit increases as the defender becomes more risk averse.
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(a) 𝜃 (𝑊 ) = 0.5𝑒−10𝑊 ,
𝜀 (𝑌 ) = 0.9𝑒−10𝑌 .
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(b) 𝜃 (𝑊 ) = 0.5𝑒−5𝑊 ,
𝜀 (𝑌 ) = 0.9𝑒−10𝑌 .
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(c) 𝜃 (𝑊 ) = 0.5𝑒−10𝑊 ,
𝜀 (𝑌 ) = 0.9𝑒−5𝑌 .

Fig. 4. Equilibrium strategies (𝑊 ∗, 𝑌 ∗,𝑈 ∗
𝑖
) of the D-I game plotted as a function of 𝐶 and 𝛾 .

6 DISCUSSION AND CONCLUSION
This paper presented and analyzed two game theoretic models involving ransomware attacks.

In the Attacker-Defender (A-D) game we analyzes the strategic interaction between an attacker

(whose action is choosing a ransom amount) and a defender deciding on their effort levels. We

identify three types of equilibria, mainly dependent on the cost of data recovery and the level of

risk-aversion for the defender. Our findings show that the backup effort is often used as a credible

threat against the attacker to induce a lower ransom, rather than as a real recovery measure. We

also detect that a highly risk-averse defender is more likely to arrive at a compromise with the

attacker, accepting a lower ransom and paying immediately.

Our analysis of the Defender-Insure (D-I) game suggests that the introduction of insurance

causes the defender to almost completely abandon backup effort and reduce their deterrence effort.

At the same time, the insurer offers to cover all efforts through premium discounts, and cover all

potential losses. The insurer’s profit is then derived from the risk-aversion of the defender, which

increases as the defender becomes more risk-averse. However, in presence of insurance, the attacker
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also enjoys a higher payout due to lower efforts by the defender. Nevertheless, our empirical results

show that there is still a market for insurance.

Analyzing a three-way A-D-I game model where the attacker is also strategic is an important

direction for future work. Furthermore, analyzing and providing potential solutions for the present

moral hazard issue, and studying the problem under incomplete information assumptions are other

possible extensions for the current work.
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