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Abstract. Recently, bug-bounty programs have gained popularity and
became a significant part of the security culture of many organizations.
Bug-bounty programs enable these organizations to enhance their se-
curity posture by harnessing the diverse expertise and outside perspec-
tive of crowds of external security experts (i.e., bug hunters). However,
quantifying the benefits of bug-bounty programs remains elusive, which
presents a significant challenge for managing them. Beyond the inher-
ent characteristics of a reported vulnerability (e.g., exploitability and
severity), the value of a bug-bounty report also depends on the prob-
ability that the reported vulnerability would be discovered by a threat
actor before an internal expert could discover and fix it. As a first step
toward quantifying the benefits of bug-bounty programs, we present a
data-driven study of the Chromium vulnerability reward program to de-
termine (1) if external bug hunters discover vulnerabilities that are sig-
nificantly different from ones that are discovered by internal security
teams, (2) how often vulnerabilities are rediscovered and which vulnera-
bility characteristics determine the probability of rediscovery, and (3) if
bug hunters discover vulnerabilities that are significantly different from
ones that are exploited by threat actors. Our key findings include that
externally-reported security issues significantly differ from internally-
reported ones, which suggests that external bug hunters provide unique
benefits by complementing internal security teams; rediscovery probabil-
ities are non-negligible, which means that finding and patching vulner-
abilities is beneficial as many vulnerabilities are easy to discover; and
vulnerabilities exploited by threat actors significantly differ from issues
that are reported either internally or externally, which suggests that se-
curity could be improved by shifting the focus of vulnerability-discovery
efforts.

Keywords: Bug bounty program · Vulnerability reward program · Soft-
ware vulnerability · Vulnerability discovery · Data analysis · Cybersecu-
rity · Chromium.

1 Introduction

Despite significant progress in software-engineering practices, the security of
most software products and services remains imperfect in practice. Tradition-
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ally, testing the security of software products and services was the responsibility
of internal security teams and external penetration-testing teams. However, these
efforts are necessarily limited in their size and in the range of expertise applied.
This limitation puts defenders at a disadvantage compared to attackers since
publicly-available products and services may be targeted by myriads of attack-
ers, who possess diverse expertise (e.g., different attackers may be familiar with
different technologies and techniques).

In recent years, bug-bounty programs—which are also known as vulnerability
reward programs—have emerged as a key element of many organizations’ security
culture [6,10,17]. Bug-bounty programs are a form of crowdsourced vulnerabil-
ity discovery, which enables harnessing the diverse expertise of a large group
of external bug hunters [4]. A program gives hackers the permission to test the
security of a certain software product or service and to report vulnerabilities
to the organization that sponsors the program [7]. By rewarding valid reports
with bounties, the program incentivizes hackers to spend effort on searching
for vulnerabilities and reporting them [18]. In addition to enabling the sponsor-
ing organization to fix security vulnerabilities before they could be exploited,
a bug-bounty program also publicly signals the organization’s commitment to
continuously improving security.

Spearheaded by Netscape as a forerunner in 1995 [4], now many large tech-
nology companies, such as Google, Intel, Facebook, and Microsoft, run bug-
bounty programs, which have garnered popularity and became a significant part
of many organizations’ security culture. Nonetheless, quantifying the benefits of
a bug-bounty program remains elusive, which presents a significant challenge for
managing them. A number of prior research efforts have investigated bug-bounty
programs (e.g., Finifter et al. [4], Zhao et al. [17], Maillart et al. [9], Laszka et
al. [7], Luna et al. [8], Elazari [3], Walshe and Simpson [16]). However, a common
limitation of previous studies is that they typically measure the value provided
by a bug-bounty program in terms of the number of vulnerabilities reported or,
in some cases, based on the inherent properties of the reported vulnerabilities,
such as severity or exploitability. As we discuss below, the number of reported
vulnerabilities and their inherent properties alone cannot quantify security ben-
efits since they ignore the likelihood of discovery.

While some vulnerability reports provide immense value to organizations
by enabling them to patch vulnerabilities before they are exploited by threat
actors, other reports provide very little or no value. First, some vulnerabilities
would be discovered anyway by internal security experts before any threat actors
could exploit them. Reports of such vulnerabilities provide little benefit since
organizations could patch them before exploitation without spending funds and
effort on external reports. Second, some vulnerabilities would never be discovered
by threat actors. Patching such vulnerabilities is futile; in fact, it may even be
considered harmful since patches can reveal the existence of vulnerabilities to
threat actors. Finally, even if some vulnerabilities are eventually discovered by
threat actors, discovery may take too long such that the software components
become obsolete before the vulnerabilities could be exploited [2]. In contrast,
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other software projects may have a relatively stable code base over time, which
also dominates the number of found vulnerabilities [12]. In light of this, the
value of a vulnerability report hinges not only on the inherent properties of the
vulnerability, such as exploitability and severity, but also on the probability that
the reported vulnerability would be exploited by threat actors before an internal
expert could discover it.

Research Questions As a first step toward quantifying the benefits of bug-
bounty programs, we present the results of a data-driven study of the Chromium
vulnerability reward program. We specifically investigate vulnerabilities reported
in the Chromium open-source projects to address the following questions.

RQ 1 (Internal vs. External Discovery) Do external bug hunters discover
vulnerabilities that are significantly different from ones that are discovered by
internal security teams (with respect to severity, weakness types, affected compo-
nents, programming languages, release channels, etc.)?

If external bug hunters work similarly to internal security teams and discover
similar vulnerabilities, then bug-bounty programs provide relatively low security
benefits, and internalizing vulnerability-discovery efforts might be more efficient
than sponsoring bug-bounty programs. However, theoretical work by Brady et
al. suggests that there are efficiency benefits to testing software products in
parallel by different teams that likely use different test cases and draw on different
types of expertise [1]. Supporting this view, Votipka et al. report key differences
between internal security testers and external bug hunters based on a survey
of 25 participants, focusing on how each group finds vulnerabilities, how they
develop their skills, and the challenges that they face [15]. In contrast, we focus
on the vulnerabilities reported by these groups to facilitate quantifying security
benefits from the perspective of a sponsoring organization.

RQ 2 (Rediscovery) How often are vulnerabilities rediscovered? Does redis-
covery probability depend on the characteristics of a vulnerability (e.g., severity
or weakness type)? How to mathematically model the probability of rediscovery
before patching?

The probability of rediscovery is a key consideration for bug-bounty and
vulnerability management since known vulnerabilities have a negative impact
only if they are rediscovered by threat actors before they are patched (and before
the patches are applied by users). In fact, some prior works have suggested
that vulnerabilities should not be patched proactively because patching only
brings them to the threat actors’ attention. According to this view, proactive
vulnerability patching and bug bounties would provide little value [13]. However,
this proposition holds only if the probability of rediscovering a vulnerability is
negligible. Schneier [14] conjectures, in contrast, that when a “person finds a
vulnerability, it is likely that another person soon will, or recently has, found
the same vulnerability.” Indeed, based on studying Microsoft security bulletins,
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Ozment finds that vulnerability rediscovery is non-negligible; but this result is
based on a small sample (14 re-discovered vulnerabilities, constituting 7.69%
of all vulnerabilities listed in the bulletins) [11]. In contrast, we characterize
rediscovery probabilities based on thousands of vulnerability reports and thereby
respond to Geer’s call to conduct longitudinal research in this context [5].

RQ 3 (External Discovery vs. Exploited in the Wild) Do bug hunters dis-
cover vulnerabilities that are significantly different from ones that are discovered
and exploited by threat actors?

The objective of both external and internal vulnerability discovery is to find
and patch vulnerabilities that would be found by threat actors (since patch-
ing vulnerabilities that threat actors would not find provides no security bene-
fit). Hence, the benefits of running bug-bounty programs hinge on whether bug
hunters find the same set of vulnerabilities that the threat actors would find. If
there is a significant discrepancy, bug-bounty managers must try to steer bug
hunters towards discovering the right types of vulnerabilities, e.g., using incen-
tives.

Overview and Organization To explore these research questions, we study
vulnerabilities reported in the open-source Chromium projects3, which include
the Chromium web browser and Chromium OS operating system. Chromium is
ideally suited for studying these questions since it has a long-running and ac-
tive vulnerability reward program (launched in January 2010), its source code
and issue tracker are publicly available, and it has a large codebase, in which
a number of security issues have been discovered and fixed over the years. We
collect a dataset of 21,422 reports of security issues from the issue tracker of
the Chromium project, which we extend by collecting additional data from
Chromium release notes, the Git source-code repositories, and the CVEDetails
vulnerability dataset. We apply a very thorough data cleaning process to reliably
determine which reports are internal and which are external, which vulnerabil-
ities were found manually and which were found using automated tools (e.g.,
fuzzers), which releases and components are affected by each issue, which reports
are duplicates (i.e., rediscoveries) and which original report they duplicate, etc.
We also apply a snowballing methodology to identify reports of vulnerabilities
that were exploited by threat actors in the wild. Based on the cleaned dataset,
we study the distributions of external and internal reports, the probabilities of
vulnerability rediscovery, and the distributions of exploited and other reported
vulnerabilities based on statistical tests.

The remainder of this paper is organized as follows. Section 2 describes our
data collection and cleaning processes and the obtained dataset. Section 3 ana-
lyzes the data to answer the research questions that we posed above. Section 4
discusses the limitations of this study and potential threats to its validity. Finally,
Section 5 provides a discussion and concluding remarks, and outlines directions
for future work.
3 https://www.chromium.org/

https://www.chromium.org/
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2 Data

Here, we describe the main steps of our data collection and cleaning process. We
provide further details in Appendix A.

2.1 Data Collection

2.1.1 Chromium Issue Tracker We collect all data from between Septem-
ber 2, 2008 and February 26, 2021 from the Chromium issue tracker4 using
Monorail API version 25. We use three types of request from the Monorail API
for data collection: (i) ListIssues, which returns the list of issues that satisfy
the query specified in the request; (ii) GetIssue, which returns the details of the
issue corresponding to the issue identification number specified in the request;
and (iii) ListComments, which returns the list of comments posted on the is-
sue specified in the request. For each issue, the Chromium issue tracker stores
a list of comments, which includes conversations among internal employees and
external parties as well as a history of changes (i.e., amendments) made to the
issue.

Each issue contains the following fields:

– IdentificationNumber : A unique number that identifies the issue.
– Status: Current state of the issue (Unconfirmed, Untriaged, Invalid, Dupli-

cate, Available, Assigned, Started, ExternalDependency, Fixed, Verified, and
Archived).

– Component : Component (or components) of the Chromium project that are
affected by the issue.

– Owner : Email address of the person who currently owns the issue (e.g.,
reporter of the issue or the person who fixes or closes the issue).

– AllLabels: Labels associated with the issue. These labels are used to cate-
gorize issues, e.g., to indicate security-severity levels (critical, high, medium,
or low), impacted versions (stable, beta, or head), reward amount for bug
bounty (e.g., Reward-500 indicates that $500 is awarded to the reporter of
the issue), or CVE ID.

– Summary : Short description of the issue.
– ReporterEmail : Email address of the person who reported the issue.
– CCDetails: Email addresses of all users who are part of the conversation

thread of the issue.
– OpenedTimestamp: Date and time when the issue was initially reported.
– ClosedTimestamp: Date and time when the issue was closed.
– BugType: Type of the issue (e.g., Bug-Security).
– MergedInto: This is an optional field that applies only to duplicate issues.

This field references the original issue, which this issue duplicates.

4 https://bugs.chromium.org/p/chromium/issues/
5 https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/
api/README.md

https://bugs.chromium.org/p/chromium/issues/
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/api/README.md
https://chromium.googlesource.com/infra/infra/+/master/appengine/monorail/api/README.md
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Each comment posted on an issue consists of the following fields:

– CommenterEmail : Email address of the person who posted the comment.
– Content : Text of the comment, images of the issue, videos of how to repro-

duce the issue, etc.
– SequenceNumber : Order of the comment among all comments posted on the

issue.
– CommentedTimestamp: Date and time when the comment was posted on

the issue.
– Amendments: Updating or removing the values of some fields of the issue

(e.g., changing the owner, status, or priority).

Each amendment added to a comment consists of the following fields:

– FieldName: Name of the field that the amendment changes.
– OldValue: List of previous values of the field. This an optional field.
– NewOrDeltaValue: List of new and removed values of the field.
– AmendmentTimestamp: Date and time when the amendment was posted.

Exploited Issues The Chromium issue tracker includes some vulnerabilities that
were discovered by malicious actors, exploited in practice, and only later reported
to the issue tracker. We collect a set of such exploited vulnerabilities by searching
for relevant keywords and keyphrases in the summary and comments of the
issues. To find a comprehensive set of such vulnerabilities, we use a snowball
approach. We begin our search with the term “exploited in the wild.” From the
set of issues gathered using this term, we then identify a list of term variations
and other terms used by reporters to describe such issues, and extend our search
with these new terms. We keep repeating this process until we cannot find any
additional exploited issues or relevant search terms.

In the end, the search terms that we use include “exploit in the wild,” “ex-
ploited in the wild,” “out in the wild,” “occurring in the wild,” “zero day,” “zero-
day,” and variations of these. With these search terms, we are able to find 300
exploited issues by searching over all valid security issues from the Chromium
issue tracker. We manually verify the descriptions of these issues and find that
only 14 are false positives (i.e., where the description does not actually state
that the issue was exploited), which we remove from our analysis of exploited
issues. Finally, we restrict the set to valid original security issues, resulting in a
set of 170 exploited vulnerabilities.

2.1.2 Chrome Releases We also collect all the release notes from the Chrome
Releases blog6, which provides information regarding both the closed-source
Chrome and the open-source Chromium projects. A release note is a blog post
written by Google when they officially release a new version of Chrome or
Chromium. Each Chromium release note contains a list of vulnerabilities that
Google patches in the Chromium project when releasing the corresponding ver-
sion. Each entry in this list of vulnerabilities contains the following fields:
6 https://chromereleases.googleblog.com/

https://chromereleases.googleblog.com/
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– IdentificationNumber : Unique identification number of an issue. We use this
to join the Chromium issue tracker data with the Chrome Releases dataset.

– ReporterName: List of bug hunters who reported the particular issue.
– Association: Organization (or organizations) where the reporters work.
– ReleaseDate: Release date of Chromium version that includes the fix for the

vulnerability.

2.1.3 Google Git Another data resource that we use in our study is the
Google Git repository7. From analyzing comments on issues that we collected
from the Chromium issue tracker, we find that most issues that have been fixed
have links to the Google Git repository, which we can use to identify the files
that were changed to fix the issue. For each issue with a Google Git repository
link, we collect the programming languages of the files that were changed. We
collect such data for 4,118 issues.

2.1.4 CVEDetails One of the fields associated with an issue is AllLabels.
These labels may include a categorical parameter Common Vulnerabilities and
Exposures (CVE) Entry, which contains an identification number called CVE
ID. These identifiers are used by cybersecurity product and service vendors and
researchers as one of the standard methods for identifying publicly known vul-
nerabilities and for cross-linking with other repositories that also use CVE IDs.
Using these CVE IDs, we collect CVSS scores, impact metrics, and weakness
types from CVEDetails8. For each issue with a CVE ID, we collect the following
details:

– CVSS Score: Common Vulnerability Scoring System (CVSS) provides a way
of capturing the fundamental characteristics of a vulnerability. This numer-
ical score reflects the severity of the vulnerability.

– Confidentiality Impact : Impact of successful exploitation on information ac-
cess and disclosure.

– Integrity Impact : Impact of successful exploitation on the trustworthiness
and veracity of information.

– Availability Impact : Impact of successful exploitation on the accessibility of
information resources.

– Access Complexity : Complexity of the attack required to exploit the vulner-
ability once an attacker has gained access to the system.

– CWE ID : Common Weakness Enumeration (CWE) is a community-developed
list of weakness types. The CWE ID references the type of software weakness
associated with the particular vulnerability.

2.2 Data Cleaning

2.2.1 Duplicate Issues A report in the issue tracker is considered to be a
duplicate if the underlying issue has already been reported to the Chromium
7 https://chromium.googlesource.com/
8 https://www.cvedetails.com/

https://chromium.googlesource.com/
https://www.cvedetails.com/
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issue tracker (i.e., if this is a rediscovery). We can determine whether an issue
is a duplicate or not based on the Status field of the issue: if the Status field is
marked as Duplicate, the issue is a duplicate.

To facilitate studying vulnerability rediscovery, we find the original report
of each duplicate issue as follows. For each duplicate issue D, we follow the
MergeInto field to retrieve the issue referenced by it. If that is a duplicate issue,
we again follow the MergeInto field of the referenced issue. We continue this
process recursively until either one of the following holds:

– We reach an issue O that is not a duplicate issue. In this case, issue O is the
original issue of duplicate issue D.

– We reach an issueX that is a duplicate issue but does not have any references
in the MergedInto field (or the value of MergedInto field is malformed). In
this case, we say that the duplicate issue D does not have an original issue.

We include a duplicate issue D in our rediscovery analysis if issue D has an
original issue O and issue O has at least one security-related label.

2.2.2 Valid and Invalid Issues If the Status field of an original issue is not
marked as Invalid, it is considered a valid original issue. If a duplicate issue
has a valid original issue, then the duplicate issue is a valid duplicate issue. If
an issue belongs to either valid original issues or valid duplicate issues, then the
issue is considered a valid issue.

If the Status field of an original issue is marked as Invalid, it is considered
an invalid original issue. If a duplicate issue has an invalid original issue, then
the duplicate issue is an invalid duplicate issue. If an issue belongs either to
invalid original issues or invalid duplicate issues, then the issue is considered an
invalid issue.

2.2.3 External and Internal Reports The Chromium issue tracker con-
tains issues that are either reported internally by Google or reported externally
by bug hunters. For each issue, we use the email address of the reporter to clas-
sify the issue as either an internal or an external report. However, not all email
addresses fall into the internal vs. external classification; thus, we cannot always
determine the report origin based on the email address alone. For each such
address, we manually check the activities of the email address, such as issues
reported and comments posted by this particular email address. Based on the
activities associated with a particular email address, we determine the reporter’s
origin. We refer the interested reader to Step 2 in Appendix A.1.1 for details on
how we determine the reporter’s origin.

There are also cases where the email address could be misleading. First, some
external bug hunters report issues privately to Google, and internal experts then
post these issues on the Chromium issue tracker. Second, sometimes internal re-
porters import issues from other bug-bounty programs (e.g., Firefox, Facebook).
In these cases, we need to identify the actual external reporter for each replicated
issue by analyzing the CC email address list of the issue. We further improve
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the data cleaning process of distinguishing internal and external reports using
the data that we collect from Chrome Releases. A detailed description of this
data cleaning process is included in Appendix A.1.1. In the end, we are able
to identify the email addresses of the actual external reporters for 98% of valid
external issues.

2.2.4 Manual and Automated Internal Reports To distinguish between
internal issues that were reported by members of the internal security team at
Google, which we call manual internal issues, and issues that were reported by
automated tools (e.g., ClusterFuzz), which we call automated internal issues, we
use the email address of the reporter (i.e., ReporterEmail field in the Chromium
issue tracker). If the email address is ClusterFuzz (after the cleaning process
described in Section 2.2.3) or ends with gserviceaccount.com, we classify the
issue as automated internal; otherwise, we consider it a manual internal issue.

2.2.5 Severity Levels There are four severity levels in the Chromium is-
sue tracker that describe the security severity of a vulnerability: Critical, High,
Medium, and Low. For each original issue, we identify its security-severity level
by extracting labels that start with Security_Severity from the AllLabels field
of the issue. If a label in the format of Security_Severity-L is available in the
list of labels (where L is one of the four security-severity levels), then the severity
of the issue is L. If no labels are available in the format of Security_Severity-L
in the list of labels, then we consider the severity of the issue to be unclassified.
For each duplicate issueD, we use the security-severity level of the corresponding
original issue O instead of the security-severity level of the duplicate issue D.

2.2.6 Release Channels, Components, and CVE IDs Google categorizes
release versions as stable, beta, and dev. Stable is the release that is available for
end-users. Beta is the release that is available for a limited number of users
to test features before releasing a stable release. Dev (commonly referred to as
head) is the release that is based on the last successful build. We use the term
release channel to refer to these release versions throughout the paper. Note
that the term release version means the type of the release instead of the version
number (e.g., Version 90 and Version 91).

We clean the fields that pertain to impacted release channels, affected compo-
nents, and CVE IDs for each issue. We follow a cleaning process that is similar to
the one that we use in the cleaning of the security-severity levels in Section 2.2.5.
The detailed description of the cleaning process is available in Appendices A.1.2
to A.1.4.

2.2.7 Weakness Types (CWE IDs) The CWE IDs associated with the
vulnerabilities represent common types of software weaknesses. Some of these
weakness types have a hierarchical relationship with other types. For exam-
ple, CWE 119 denotes the error “Improper Restriction of Operations within
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Table (1) Distribution of Report Origin
Report Origin Email Number of Issues

External External 9,758

Manual Internal
scarybeasts@gmail.com 134

@chromium.org 3,358
@google.com 646

others 18

Automated Internal ClusterFuzz 6,384
gserviceaccount.com 1,124

the Bounds of a Memory Buffer.” This weakness type is also the parent of other
CWEs, including CWE 120 (Classic Buffer Overflow), CWE 125 (Out-of-bounds
Read), and CWE 787 (Out-of-bounds Write). For ease of presentation, we group
the CWE weakness types together based on their parent-children hierarchy.

2.2.8 First Reported, Fixed, and Released Timestamps The first re-
ported timestamp (Treported) is the date and time of the first report of a valid
original issue. The fixed timestamp (Tfix) is the date and time of when a valid
original issue is marked as fixed. The released timestamp (Trelease) is the date
and time when the fix for a valid original issue is released. The detailed descrip-
tion of cleaning data and determining Treported, Tfix, and Trelease is included in
Appendix A.1.5.

For each valid original issue, we define the time to fix ∆fix and the time to
release ∆release as follows:

∆fix = Tfix − Treported
∆release = Trelease − Treported

2.3 Dataset

We collect 766,529 issues in total from the Chromium issue tracker, which include
both security-related issues as well as other bugs (e.g., usability, performance,
reliability). For our security analysis, we consider only issues that satisfy at least
one of the following three conditions: (1) the issue is an original issue, and it
has at least one security label; (2) the issue is an original issue, and the value
of field BugType is Bug-Security; and (3) the issue is a duplicate issue, and
its original issue satisfies at least one of the above conditions. Based on these
conditions, we consider 21,422 security issues, which contain a combined total
of 367,317 comments, in our security analysis. Out of these 21,422 issues, only
248 are invalid issues; the rest are valid.

Table 1 shows the distribution of report origin for all security issues (external
vs. manual internal vs. automated internal) as well as a more detailed type
of email address from the ReporterEmail field. Table 2 shows the distribution
of issue validity (valid vs. invalid) as well as the more detailed issue status.



On the Benefits of Bug Bounty Programs 11

Table (2) Distribution of Issue Status
Validity Status Number of Issues

Valid

Archived 215
Assigned 41
Available 21
Closed 1

ExternalDependency 2
Fixed 7,305
IceBox 1
Started 5

Untriaged 15
Verified 4,090
WontFix 6,130
Duplicate 3,348

Invalid Duplicate 5
Invalid 248

Table (3) Distribution of Issue
Severity

Security Severity No. of Issues
Critical 269
High 7284

Medium 4773
Low 2340

Unclassified 6503

Table (4) Distribution of Issue Re-
lease Channel

Release Channel No. of Issues
Beta 1326
Stable 7628
Head 3291

Not Available 8449

Table 3 shows the distribution of the four security-severity levels (i.e., Critical,
High, Medium, and Low). Note that unclassified denotes security issues that
do not have any security-severity level in the issue tracker. Table 4 shows the
distribution of release channels. Note that one issue may impact more than one
release channel; hence, the numbers do not add up to the total number of issues.
Not available denotes security issues that do not have any release channels listed.
Also, note that this table excludes duplicate issues whose release channels differ
from those of the original issue.

Of the 21,169 valid security issues, only 3,166 vulnerabilities have CVE IDs
assigned to them. From these issues, we obtain 2,588 unique CVE IDs and collect
CVEDetails information for these IDs. Out of the 2,588 CVE IDs, 355 vulnera-
bilities do not have any associated CWE IDs, and 505 vulnerabilities do not have
any information on CVEDetails. The remaining issues with CVEDetails infor-
mation have 67 unique CWE IDs. Table 5 shows the 10 most frequent weakness
types with their CWE IDs, names, and the number of issues associated with
these weaknesses.
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Table (5) Most Common Weakness Types for Chromium Security Issues
CWE ID Name No. of Issues

119 Memory buffer bounds error 557
20 Improper input validation 310
399 Resource management error 278
825 Expired pointer dereference 142
275 Permission issues 113
189 Numeric errors 105
200 Exposure of sensitive information 101
476 NULL pointer dereference 66
284 Improper access control 58
362 Race condition 54

3 Results

3.1 Internal vs. External Discovery (RQ1)

First, we study the differences between reports of different origins (i.e., external
vs. manual internal vs. automated internal) in terms of the impacted release
channels and components, security severity, weakness types, and programming
languages.

3.1.1 All Valid Issues We first compare internal (both manual and auto-
mated) and external reports based on all valid issues. Accordingly, we consider
11,632 internally reported ( 4,127 manual and 7,505 automated) valid issues and
9,537 externally reported valid issues from the dataset. Later, in Section 3.1.2,
we will make a comparison based only on issues that impact stable releases since
some of the differences that we observe here may be explained by external bug
hunters focusing more on stable releases (compared to internal) instead of head
or beta releases.

Fig. 1 shows the distributions of impacted release channels, security-severity
levels, most frequent weakness types, most frequently affected components, and
most frequently modified programming languages for automated internal, man-
ual internal, and external reports. Fig. 1a shows the distribution of release chan-
nels with respect to the origins of the reports. Based on the distribution, we
observe that 81% of external reports pertain to issues that impact stable re-
leases; meanwhile, only 12% of external reports are related to head releases. This
suggests that external reporters are more focused on issues that impact stable
releases rather than head or beta ones. We can also observe that around 90%
of manual internal reports are related to stable releases, while around 50% of
automated internal reports are related to head releases.

Fig. 1b shows the distribution of security-severity levels with respect to report
origins. Based on this figure, we find that around 40% of all reports (including
external, manual internal, and automated internal reports) are on issues with
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Fig. (1) Comparison of automated internal (�), manual internal (�), and ex-
ternal (�) security issues based on impacted release channels, security-severity
levels, weakness types, affected components, and programming languages.
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high criticality. Also, we observe that 20% of low-severity external reports are
duplicates, while only 10% of low-severity internal reports are duplicates. In this
analysis, we exclude 883 out of 4,127 manual internal issues (around 21%), 923
out of 7,505 automated internal issues (around 12%), and 4,697 out of 9,537
external issues (around 49%) because they do not contain any severity level.
As for weakness types, we find that issues related to Memory buffer bounds
error (see Fig. 1c) are the most common for all report origins (external, manual
internal, and automated internal as well).

Next, we consider the distributions of the impacted components in Fig. 1d.
We observe that the distributions for different report origins are quite similar.
However, there are some important differences. For example, compared to in-
ternal reports, a higher percentage of external reports impact components UI
and UI>Browser. This suggests that external reporters focus more on finding
vulnerabilities in the Chromium user interface compared to internal reporters.
During this analysis, we exclude 667 out of 4,127 manual internal issues (around
16%), 1,748 out of 7,505 automated internal issues (around 23%), and 3,894 out
of 9,537 external issues (around 40%) because they do not list any components.
As for programming languages, we find that source files written in C++ are the
most frequently involved for issues of all report origins (see Fig. 1e).

Finding 1 There are substantial differences between the issues that are discov-
ered internally and the ones that are discovered by external bug hunters in terms
of security-severity levels, affected components, weakness types, and release chan-
nels. Compared to manual internal issues, a higher percentage of external issues
impact the head release channel. The opposite is true for the stable release chan-
nel. Relatively, a high percentage of external issues have low and medium secu-
rity severity. However, a higher percentage of manual internal issues have critical
and high security severity. Regarding weakness types, there are also substantial
differences between manual internal issues and external issues. Importantly, the
majority of manual internal issues are related to Memory Buffer Bounds Errors.
With regards to the affected components, in comparison with manual internal is-
sues, a higher percentage of external issues affect the Chromium user interface.
The opposite is true for Blink and Internals. Finally, there are slight differences
between manual internal and external issues with respect to the programming
languages of the source files. For instance, a higher percentage of external re-
ports are related to C++, JavaScript, and HTML compared to internal reports.
The opposite is true for C, XML, and Python.

3.1.2 All Valid Issues Impacting Stable Releases In Fig. 1a, we ob-
served that external bug hunters are mostly interested in reporting issues that
impact the stable release channel, instead of the beta and head release channels.
However, some of the differences between internal and external discovery could
perhaps be explained simply by this difference in the release channels on which
they focus. Therefore, we will now conduct an analysis—similar to the one in
Section 3.1.1—considering only the issues that impact the stable release chan-
nel. We again investigate how the origin of a report (i.e., external vs. manual
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Fig. (2) Comparison of automated internal (�), manual internal (�), and ex-
ternal (�) security issues in stable releases based on security-severity levels,
weakness types, affected components, and programming languages.
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internal vs. automated internal) relates to security severity, weakness type, im-
pacted components, and programming languages. Accordingly, in this analysis,
we consider 2,224 manual internal, 2,125 automated internal, and 3,462 external
reports that relate to the stable release channel.

Fig. 2 shows the distribution of security-severity levels, weakness types, af-
fected components, and programming languages for manual internal, automated
internal, and external issues that impact stable releases. Fig. 2a shows the distri-
bution of security-severity levels for issues that impact stable release channels.
We observe that this distribution is very similar to the one shown by Fig. 1b (for
all issues). Compared to external issues, a higher percentage of internal issues
have high severity level. In this analysis, we exclude 78 out of 2,224 manual in-
ternal issues (around 3.5%), 156 out of 2,125 automated internal issues (around
7.5%), and 102 out of 3,462 external issues (around 2.9%) because they do not
contain any criticality value.

Fig. 2c shows the distribution of affected components for the issues that
impact the stable release channel. We observe that the distribution looks similar
to Fig. 1d, and external bug hunters report more issues on UI and UI>Browser,
compared to the internal reporters. Again, this observation suggests that external
reporters focus more on discovering vulnerabilities in the Chromium UI than
internal reporters, in the stable release. Again during this analysis based on
components, we exclude 249 out of 2,224 manual internal issues (around 11.1%),
513 out of 2,125 automated internal issues (around 24.1%), and 257 out of 3,462
external issues (around 7.4%) that do not list any components.

Fig. 2b shows the distribution of weakness types for issues that impact stable
release channel. Here, we again see a similar distribution as in Fig. 1c. Our
analysis shows that 43% of manual internal reports are related to memory buffer
bounds error compared to 30% for automated internal reports, and 22% for
external reports. This suggests that internal reports are more focused on the
memory buffer bounds error compared to external reports. Fig. 2d shows the
distribution of manual internal versus automated internal versus external reports
with respect to programming languages for stable releases. This figure again
shows that for all manual internal, automated internal, and external reports,
C++ files were modified the most in stable releases.

Finding 2 Based only on issues that impact stable releases, we again observe
substantial differences between issues that are discovered by external bug hunters
and those that are discovered manually and internally in terms of severity, weak-
ness types, affected components, and programming languages. We again see that
compared to manual internal issues, a higher percentage of external issues have
low and medium security severity. The opposite is true for critical and high
security severity. There are also substantial differences between manual internal
issues and external issues with respect to weakness types. For instance, majority
of manual internal issues are related to the weakness type of Memory Buffer
Bounds Error. With respect to the affected components, external reporters show
more interest in finding issues related to UI compared to internal reporters. There
are also differences between manual internal and external issues with respect to
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Table (6) Chi-Squared Test Results on Distributions of Externally vs. Manually
Internally Reported Valid Security Issues

Category All Valid Issues Valid Issues in
Stable Releases

DOF χ2 Status DOF χ2 Status
Release Channel 2 143.11 5

Security Severity 3 75.52 5 3 115.27 5

Weakness Types 36 129.35 5 36 123.52 5

Components 471 2627.23 5 382 1364.62 5

Programming Languages 17 132.96 5 17 97.06 5

programming languages. For example, a higher percentage of external reports
are related to C++, JavaScript, and HTML compared to internal reports. The
opposite is true for C, XML, and Python.

3.1.3 Pearson’s Chi-Squared Test In Sections 3.1.1 and 3.1.2, we analyzed
the distributions of security severity, weakness types, affected components, and
programming languages for different report origins (i.e., external, automated
internal, manual internal) considering issues that impact all release channels as
well as considering only issues that impact the stable release channels. These ob-
servations suggested that the distributions are dependent on the report origin.
In this subsection, we present statistical testing validating these observations.
To perform statistical testing, we choose the test of independence, i.e., Pearson’s
chi-squared test, which assesses whether observations consisting of distribution
based on two or more variables (e.g. manual internal vs. external) are indepen-
dent of each other (in other words, whether they follow the same distribution
regardless of the variable). Accordingly, we use a test of independence to deter-
mine whether the distributions of categories such as severity, weakness types,
affected components, and programming languages are independent of report ori-
gin, or not.

In statistical testing, we first define the null hypothesis and the alternate hy-
pothesis for each category Y in release channel, security-severity levels, weakness
types, components, and programming languages as shown below:

Null Hypothesis (H0): the distribution of observed values in Y are indepen-
dent of the report origin (i.e., manual internal vs. external).

Alternative Hypothesis (H1): the distribution of observed values in Y are
dependent on the report origin.

We first perform the statistical tests for all valid issues, considering all the dif-
ferent categories. Then, we also perform the statistical tests for valid issues that
impact the stable release channel, again considering all the different categories
(except of course for release channels). Table 6 shows that for all categories (i.e.,
release channels, security-severity levels, weakness types, components, program-
ming languages), the computed χ2 value exceeds the critical value (α = 0.05),
and we reject the null hypothesis. In other words, the distribution of each cate-
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gory is dependent on the report origin in both cases (i.e., for all issues and for
issues that impact only stable releases).

Finding 3 Based on the statistical tests, we find that manual internal and ex-
ternal reports follow significantly different distributions in terms of impacted
release channels, security-severity levels, weakness types, affected components,
and programming languages.

3.2 Rediscovery (RQ2)

Next, we analyze how often vulnerabilities are rediscovered and how proba-
bility/frequency of rediscovery depends on severity, impacted release channels,
weakness types, affected software components, and programming languages. In
this analysis, we consider all 17,826 valid original security issues and the 3,343
duplicate issues corresponding to these original issues.

3.2.1 Distribution of Rediscoveries First, we study how the number of
rediscoveries varies with impacted release channels, security-severity levels, af-
fected components, weakness types, and programming languages.

Fig. 3 shows the ratio of issues that were rediscovered based on impacted re-
lease channels, security-severity levels, weakness types, affected components, and
modified programming languages. Regarding the distribution of release channels
in Fig. 3a, we observe that both head and stable releases have higher redis-
covery rates compared to the beta release channel. Based on the distribution
of security-severity levels in Fig. 3b, we observe that critical issues are more
likely to be rediscovered than issues of any other severity level, and the likeli-
hood of rediscovery seems to be generally decreasing with a decrease in severity.
Further, when we consider the distribution of affected components in Fig. 3d,
issues affecting component Blink>JavaScript are more likely to be rediscovered
in comparison with other components. Regarding weakness types (see Fig. 3c),
resource management error, numeric errors, and improper input validation is-
sues are more likely to be rediscovered than other weakness types. Fig. 3e shows
the percentage of vulnerabilities that are rediscovered at least once with respect
to the modified programming languages. This figure shows that 20%, 18%, and
16% of JavaScript, HTML, and C++ issues are, respectively, rediscovered at
least once. M4 language exhibits a high rediscovery rate, but we only had 8
issues in M4. Thus, our result for M4 is unreliable.

Finding 4 We observe that the rediscovery of a vulnerability depends on its
security severity, affected components, impacted release channel, weakness type,
and programming language.

Next, we study how the probability/rate of rediscovery evolves over time,
starting from the day when an issues is first reported. Since the probability of
rediscovery depends on the probability of the vulnerability having been fixed
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Fig. (3) Fraction of vulnerabilities that are rediscovered at least once for each
impacted release channel, security-severity level, weakness type, affected compo-
nent, and programming language.
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Fig. (4) Probability that (a) an issue is not fixed and (b) an issue is not released
in the first t days after the issue is reported; probability that (c) an issue is
rediscovered on the t-th day after it is reported.

(i.e., once a vulnerability is fixed, it is unlikely to be reported again), we first
consider how the probability of fixing evolves over time.

Figure 4a shows the probability that an issue is not fixed in the first t days
after it is first reported. Specifically, Pr [∆fix > t] is the probability of a vulner-
ability not being fixed in the first t days. We were able to fit the data with a
logarithmic function (−0.113×ln t+0.6805) with R2 = 95%. We also considered
power function (2.3536× t−0.643) with R2 = 82% and second-degree polynomial
function (5× 10−6× t2− 0.0026× t+0.3875) with R2 = 77%. Logarithmic func-
tion attained the best fit among the aforementioned functions; thus, we selected
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it to fit the data. We observe that 25% of issues are fixed within 4 days of first
being reported. We can conclude that the probability of an issue not being fixed
decreases dramatically as time passes.

Fig. 4b shows the probability Pr [∆release > t] that the fix (i.e., patch) of
issue is not released in the first t days since the issue is first reported. Polynomial
function (−7× 10−8 × t3 + 5× 10−5 × t2 − 0.0128× t+ 1.0668) is applied to fit
the data with R2 = 99%. We also considered second-degree polynomial function
(10−5 × t2 − 0.0072 × t + 0.8949) with R2 = 93% and logarithmic function
(−0.26 × ln t + 1.4877) with R2 = 91%. The third-degree polynomial attained
the best fit. The results shows that as the number of days from the first time an
issue is reported increases, the probability that a fix has not been released for
the issue decreases rapidly.

Figure 4c shows the probability that an issue is rediscovered on the t-th day
after its discovery. Specifically, it shows Pr [Re(t) | t < ∆release], the probability
that the vulnerability is re-discovered at least once on the t-th day (event Re(t))
given that a fix has not been released by that day (condition t < ∆release). The
rationale behind imposing the condition t < ∆release is that we are interested in
the probability of an unpatched vulnerability being rediscovered; if we omitted
this condition, our results would be skewed by the probability of the vulnera-
bility being fixed and the patch being released. The trend line is fitted using
power function (2.032 × t−1.058) with R2 = 84%. Similarly, we also considered
logarithmic function (−0.173 × ln t + 0.7232) with R2 = 66% and third-degree
polynomial function (−4 × 10−6 × t3 + 0.0008 × t2 − 0.0431 × t + 0.7196) with
R2 = 67%. Based on R2, we chose the power function. We observe that as the
number of days from the first time an issue is reported increases, the probability
of rediscovery decreases steadily.

Finding 5 As the number of days from the first time an issue is reported in-
creases, the probability of rediscovery decreases. Half of all issues are fixed within
8 days from when they are first reported. Half of all issue fixes (i.e., patches) are
released within 55 days.

3.3 External Discovery vs. Exploited in the Wild (RQ3)

Finally, we study how many vulnerabilities have been discovered and exploited
by malicious actors and what the differences are between these exploited vul-
nerabilities and other vulnerabilities. Among the 21,169 valid security issues, we
identify 170 vulnerabilities that have been exploited in the wild (Section 2.1.1).
We compare these issues with all other issues based on release channels, security-
severity levels, weakness types, components, and programming languages distri-
bution. We also compare these exploited issues to vulnerabilities discovered by
benign external reporters. We perform chi-squared tests for all these comparisons
as well.
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Fig. (5) Comparison of exploited issues (�) and all other issues (�) based on
release channel, severity, weakness type, affected component, and programming
language.
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3.3.1 Comparison with All Other Issues We first compare the issues
that were exploited in the wild with all other issues based on various attributes.
We have a total of 170 exploited issues and 20,999 issues that have not been
exploited.

Fig. 5 shows the distributions of various attributes for exploited issues and
all other issues. Fig. 5a shows the distribution of release channels for exploited
issues and all other issues. We observe that 71% of exploited issues impacted the
stable release channel. Fig. 5b shows a comparison between exploited and other
issues based on security severity. We can see that both exploited issues and all
other issues have the same percentage (49.6%) in high security severity.

Of the 170 exploited vulnerabilities, only 31 vulnerabilities have weakness
types defined for them in CVEDetails. Fig. 5c lists the most frequent weakness
types found in these 31 exploited issues and shows the distribution of these
weakness types for both exploited and all other issues. Here, we can see that
malicious actors are more focused on vulnerabilities associated with resource
management errors.

Fig. 5d shows the distribution of impacted components for exploited issues
and all other issues. The most frequently impacted component in all the issues is
Blink. 36.4% of the exploited issues have an impact on the Blink component. Fi-
nally, Fig. 5e shows the percentage of vulnerabilities by programming languages,
comparing exploited issues with all other issues. C++ files are modified the most
in both exploited and all other issues.

Finding 6 There are substantial differences between issues that are discovered
by malicious actors and ones that are not, in terms of impacted release chan-
nels, weakness types, affected components, and programming languages. While
71% of exploited issues are in the stable release channel, only 36% of all other
issues are in the stable release channel. With respect to weakness types, there are
substantial differences between exploited issues and all other issues. Importantly,
exploited issues have a higher percentage in the weakness type Resource Manage-
ment Error, whereas all other issues have higher percentages in the weakness type
Memory Buffer Bounds Error. Moreover, issues that impact Blink, UI>Browser,
and UI components have relatively higher percentages in exploited issues. As for
programming languages, a higher percentage of exploited issues are related to
C++, HTML, and XML compared to all other issues. The opposite is true for
JavaScript and C. With respect to security severity, we do not observe any sub-
stantial differences between exploited issues and all other issues.

3.3.2 Comparison with Externally Reported Issues Since our focus is
on bug bounty programs, we next study the differences and similarities between
vulnerabilities that are exploited by malicious actors and vulnerabilities that are
discovered by external bug hunters. We have a total of 170 exploited issues and
9,519 externally reported vulnerabilities. 92 of the exploited vulnerabilities have
also been reported by external reporters. We compare all the exploited issues
with the remaining 9,427 externally reported issues based on release channel,
security severity, weakness types, components, and programming languages.
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Fig. (6) Comparison of exploited issues (�) and other external issues (�) based
on release channel, severity, weakness type, affected component, and program-
ming language.
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Fig. 6 shows the distribution of various attributes for all the exploited issues
and other remaining externally reported issues. Fig. 6a shows the distribution
of release channels for exploited issues and for other externally reported issues.
Most of these issues impact stable releases and the distribution is similar to the
distribution in Fig. 5a. Fig. 6b shows the distribution security-severity levels for
exploited and other externally reported vulnerabilities. Most of the exploited
and externally reported vulnerabilities have high security severity assigned to
them.

Fig. 6c shows the distribution of weakness types for exploited issues and for
other external issues. Among the 7 most frequent weakness types, most exploited
issues are Resource Management Errors, whereas most externally reported issues
are Memory Buffer Bounds Errors. Fig. 6d shows the distribution of affected
components for exploited issues and other external issues (listing only the 10
components that are most frequently impacted by exploited issues). Blink, In-
ternal, and UI are the three most impacted components in both cases. Finally,
Fig. 6e shows the distribution of programming languages, comparing exploited
issues with other external issues (listing only the 10 languages that are most
frequently modified). C++ files are modified the most in both exploited and all
other externally reported issues.

Finding 7 There are substantial differences between issues that are discovered
by malicious actors and ones that are discovered and reported by bug hunters, in
terms of release channels, weakness types, affected components, and programming
languages. Exploited issues are more likely to impact the stable release channel,
with a slightly higher percentage compared to other external issues. Meanwhile,
other external issues have higher percentage in head release channel compared
to exploited issues. In contrast, we do not observe any substantial differences
between exploited issues and all other external issues in terms of security severity.
Regarding weakness types, there are also substantial differences between exploited
issues and external issues. Importantly, exploited issues have higher percentage in
weakness type Resource Management Error, whereas other external issues have
higher percentage in weakness type Memory Buffer Bounds Error. Lastly, there
are slight differences between exploited issues and external issues with respect to
the programming languages of the source files. For instance, a higher percentage
of exploited issues are related to C++, C, and XML compared to other external
issues. The opposite is true for JavaScript and Python.

3.3.3 Pearson’s Chi-Squared Test We perform chi-squared tests to deter-
mine if the categories (i.e., release channels, security-severity levels, weakness
types, affected components, and programming languages) are independent of
whether an issues is exploited or not. Table 7 shows the computed chi-squared
(χ2) values for different categories, comparing exploited with all other issues, and
also comparing exploited with other externally reported issues. For both com-
parisons, the computed chi-squared (χ2) values for release channel, components,
weakness types, and programming languages are greater than the critical value,
which we set to 5%. Hence, we reject the null hypothesis for these categories
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Table (7) Chi-Squared Test Results on the Distributions of Exploited Issues
vs. All Other Issues & vs. Externally Reported Issues

Category All Other Issues Externally Reported
Issues

DOF χ2 Status χ2 Status
Release Channel 2 53.01 5 12.92 5

Security Severity 3 1.6 X(0.66) 3.47 X(0.32)
Weakness Types 6 30.08 5 42.64 5

Components 113 691.83 5 540.13 5

Programming Languages 18 45.29 5 32.11 5

(i.e., the distributions are different for exploited and non-exploited issues). But
for security severity, the calculated chi-squared (χ2) value is less than the critical
value; therefore, we accept the null hypothesis for this category.

Finding 8 Based on the statistical tests, we observe that the distribution of
exploited issues is significantly different from the distributions of both all other
issues and externally reported issues, in terms of release channels, weakness
types, affected components, and programming languages.

4 Limitations

In this research effort, we studied data that we collected from a single software
project, the open-source Chromium project. While we hypothesize that our find-
ings apply to other similar projects as well, our current set of results demonstrate
the validity of our findings only for Chromium. In future work, we plan to extend
our study to consider other software projects as well to demonstrate that our
findings are valid more generally.

4.1 Potential Threats to Validity

Here, we discuss issues that we encountered during our data cleaning and anal-
ysis, which could threaten the validity of our results, and how we addressed
them.

Misclassification of Issue Validity For each issue I, we identify the status based
on the Status field provided for the issue I. The Chromium issues tracker did
not clearly explain the status Icebox. Icebox is found to be the status which
comes before either Unconfirmed or Untriaged status of the issue I. Further,
the Chromium issue tracker supposedly assigns issue I to the status WontFix,
if the Chromium team cannot reproduce the particular issue I, or if it works as
intended, is invalid or obsolete. But, when we analyzed the collected dataset,
we found that 10 rewarded issues are in the status WontFix. This conflicts with
the description for the WontFix status in the Chromium issue tracker. During
our security analysis, we assume issues that are currently in status Icebox or
WontFix to be valid issues.
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Misclassification of Internal and External Reports We classify issues with the Re-
porterEmail field scarybeast@gmail.com as internally reported and issues with
the ReporterEmail field as skylined@chromium.org, and cnardi@chromium.org
as externally reported based on our data cleaning process for internal and ex-
ternal reporters. But there could be some other email addresses, which we failed
to identify during our data-cleaning process.

Inconsistent Components and Release Channels Some duplicate issues have dif-
ferent sets of components than their original issue O, even after the data cleaning
process. There are 311 such duplicates issues and 230 original issues available in
our collected security issues. Accordingly, we ignore those 541 issues (2.5% of to-
tal security issues) analysis using components. Further, some duplicate issues D
have a different set of release channels than their original issues O, even after
the data cleaning process. There are 314 such duplicates issues and 210 original
issues available in our collected security issues. Thus, we ignore those 524 issues
(2.4% of total security issues) in the analysis using release channels.

Inaccuracy in First-Reported and Fixed Timestamps Since some of the external
bugs are reported in private to Chromium and then reported by internal re-
porters, those reports do not reflect the actual first reported time of the vulner-
ability. Thus, the computation of first reported timestamp may not be accurate.
When computing the fixed timestamp, we consider the time in which the issue
moved to Fixed status as the time in which the bug is Fixed. But this may not
provide an accurate fixed timestamp.

Sudden Increase in Number of Issues Following the Introduction of MSAN In
Chrome release 36.0, 113 vulnerabilities are identified by ClusterFuzz using the
MemorySanitizer (MSAN)9 in a single day in July 2014. All of these vulner-
abilities were then marked as fixed on the same day at nearly the same time,
then released with Chrome 38.0. Thus, all of these issues share the same first-
reported timestamp, fixed timestamp, and released timestamp. Since this includes
significantly more vulnerabilities than other releases, we ignored all of these 113
vulnerabilities from parts of our analysis related to the time-to-fix or time-to-
release of issues.

Chrome Git Repository While analyzing links to the Git repository to access files
that have been modified by vulnerability patches, we encountered 3,552 pages
(out of the 13,157 URLs) that were hosted in the internal, closed repository of
the Chrome project, and hence were inaccessible for us. We excluded those pages
from our analysis of programming languages.

Exploited Issues Among the 21,169 valid security issues, we could identify 170
distinct vulnerabilities that have been exploited in the wild. While we were able
to manually verify every one of these to ensure that they contain no false positives
9 https://clang.llvm.org/docs/MemorySanitizer.html

https://clang.llvm.org/docs/MemorySanitizer.html
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(i.e., issues that were not actually exploited), we cannot ensure that we have
found every single vulnerability that was exploited. However, for the analysis
presented in Section 3.3, it suffices to ensure that our sample set is unbiased
in the sense that the distribution of release channels, severity, etc. remain the
same. Since our selection was based on search terms that are not related to any
of these categories, we believe that our sample is representative.

5 Conclusion

Internal vs. External Discovery Our study finds that there are significant differ-
ences between vulnerabilities discovered by external bug hunters and by internal
security teams. In the Chromium projects, external bug hunters are more likely
to find vulnerabilities in more Stable releases and in UI components, and vulner-
abilities that are input validation or resource management errors; but they are
less likely to find high-severity vulnerabilities. Furthermore, some of these dif-
ferences cannot be explained by internal testers focusing more on Head releases
(and perhaps having access to the Head code earlier than external bug hunters)
since significant differences exist between external and internal discoveries even if
we consider only Stable release channels. This suggests that external bug hunters
provide security benefits by complementing internal security teams with diverse
expertise and outside perspective, discovering different types of vulnerabilities.

Vulnerability Rediscovery Our study finds that rediscovery probabilities are non-
negligible; of all reported issues, around 10% are rediscovered and reported later
as duplicates. Note that these rediscovery probabilities would only be higher if
vulnerabilities were not fixed eventually, which we can extrapolate from Fig. 4c.
Further, we find that rediscoveries are not uniformly distributed over time since
they are more likely to happen shortly after the first report (even if we remove the
sampling bias that would be introduced by patching, which effectively decreases
the probability of later rediscoveries to zero). We also observe that rediscovery
probabilities vary by impacted release channel, security severity, weakness type,
affected components, and programming languages. This suggests that some types
of vulnerabilities are easier to discover, and hence organizations must prioritize
finding and fixing them.

External Discovery vs. Exploited in the Wild Our study finds that while discover-
ies by threat actors and bug hunters are mostly similar, there are some differences
that should be addressed. Vulnerabilities that are exploited in the wild are more
likely to be resource management and incorrect type conversion/cast errors and
more likely to be in the Blink component of Chromium. This suggests that se-
curity could be improved by shifting the focus of vulnerability-discovery efforts
towards types of issues that are exploited most often (e.g., through incentivizing
bug hunters to focus more on these types of issues).
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Future Work We are planning to extend our study in two directions. First, we
will extend our study to consider other software projects as well (in addition to
the Chromium projects) to verify that our findings hold for vulnerability and
bug-bounty management more generally, not just for the Chromium projects.
Second, we will build principled models of vulnerability discovery and patching
processes, based on the empirical models (Section 3.2) that we established in
this work for the Chromium project.
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A Appendix

A.1 Detailed Data Cleaning

A.1.1 External and Internal Reports

Step 1: Initial Classification based on ReporterEmail Field The Chromium is-
sue tracker contains issues that are either reported internally by Google or re-
ported externally by bug hunters. For each issue I, we use the email address of
the reporter to classify the issue I as either an internal or an external report.
Specifically, if the email address is ClusterFuzz or ends with @google.com,
@chromium.org, or gserviceaccount.com, then we consider issue I to be inter-
nally reported; otherwise, we consider it to be externally reported.

Step 2: Identifying Outlier Email Addresses based on Comments We found that
some of the reporters have email addresses that do not fit the rules of Step 1. One
exception is the address scarybeast@gmail.com, which belongs to an internal
reporter. We identified this exception through analyzing the comments posted
on issues reported by this email address. Based on the comments, we determined
that this reporter is one of the key persons in announcing the confirmation of
reward to external reporters. Thus, we consider issues reported by this email
address as internal issues.10

We also find some other exceptions where the email address of the reporter
skylined@chromium.org or cnardi@chromium.org. When we analyze the com-
ments on issues reported by skylined@chromium.org he served as a team mem-
ber of the Google Chrome Security Team from 2008 - 2013 and left Google.
After leaving Google, he reported few vulnerabilities as an external reporter
and received rewards. When we analyze the comments on issues reported by
cnardi@chromium.org, one comment mentions “cnardi@chromium.org as an
external reporter regardless of his email address ends with @chromium.org.” Ac-
cordingly, we classify him as an external reporter. We consider the issues reported
by these two reporters as external reports.

Step 3:Analyzing CCDetails Field and Identifying the Actual External Reporters
Some issues that are reported by internal-reporters are replications of issues pri-
vately reported by external reporters to Google or issues imported from other
bug bounty programs (e.g., Firefox, Facebook). Google replicates most of these
externally reported issues through the automated tool ClusterFuzz, but some-
times Google replicates them manually using internal reporters (e.g., scary-
beasts@gmail.com). For each replicated issue, we need to identify the actual
external reporter. We use the following approach and identify the email address
of the external reporter of those issues.

For each issue I for which we have to identify the email address of the ac-
tual external reporter, we first extract the CC email addresses (CCall) from the
10 We believe that this person was actually a member of the Google Chrome Security

Team.
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CCDetails field. From CCall, we obtain a new list CCremain by removing the
email address where email address belongs to an internal reporter at the end of
Step 2. For each email address in the CCremain list, we look into comments of the
corresponding issue I whether any comments has following one of the following
phrases “originally reported by”, “thanks to”, “credits to”, “thanks”, “credits”, “re-
ward”, “congratulations” immediately followed by username or email address or
full name of the reporter. If the username of the email address or the reporter’s
full name matches the email address, we add the particular email address to the
possible-reporters list.

We repeat the same process for every email address on the list. After the
process finishes, we check the possible-reporters list of the issue I. If the possible-
reporters list is empty, we set the ReporterEmail field of the issue as empty (there
are 50 issues for which we cannot identify the email address of the actual external
reporter during this data cleaning process). If the possible-reporters list is not
empty, then we set the ReporterEmail field of the issue with the list of email
addresses in the potential-reporters list.

Even though there should be only one reporter for each issue (i.e., length
of potential-reporters list should be one), we observe that there are some issues
where multiple reporters are rewarded. This may happen when multiple external
bug hunters report the same issue to Google (not through the issue tracker) and
Google replicates these reports by posting a single issue on the tracker via an
internal reporter. In such cases, we let the reporter e-mail of the issue be a list
instead of a single email address. Note that for some of these issues with multiple
reporters, we perform an additional verification in Step 4.

Step 4: Cleaning based on Chrome Releases Data Further, based on data col-
lected from Chrome Releases (Section 2.1.2), we improve the data cleaning pro-
cess of internal and external reports. During the last step (Step 3), we mark the
ReporterEmail field as empty for the issues where we are unable to determine
the actual external reporter.

For each issue I which marked the ReporterEmail field as empty in the last
step (Step 3), we look for a data entry DE with IdentificationNumber field
same as the Identification Number field of issue I. If there exists a data entry
in Chrome Releases dataset, then we set the Report Email of issue I with the
Reporter Name in data entry DE. Accordingly, we are able to identify the actual
external reporter details 14 issues.

Further, during the last step (Step 3), we have more than one email address
set to the ReporterEmail field for 13 issues. For each issue I in those 13 issues,
we look for a data entry DE with Identification Number field the same as the
IdentificationNumber field of issue I. If there exists a data entry (DE ) in the
Chrome Releases dataset, then we check the value in ReporterName field of DE,
if it indicates a single person, then we update the ReportEmail field with the
single person. We are able to update 8 out of 13 issues with multiple reporters
to the actual external reporters. At the end of this step, we left with 22 issues to
go through an additional cleaning process to identify the original ReporterEmail
field of the issue.
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For each reporter name RN used as the ReporterEmail field of the above
22 issues, we list out the issues(LRN ) reported by the reporter RN based on
the Chrome Releases dataset. For each issue in LRN , we look for issue I which
has the same Identification Number and Reporter Email is in the email address
format. If we obtain the issue I, then we map the reporter name RN with the
ReporterEmail field of issue I ; otherwise, we continue the same process with the
next issue in the list.

Finally, we repeat Step 1 once again with the cleaned dataset based on Steps
3 and 4. We identify the email address of the actual external reporter for 98%
of valid external issues.

A.1.2 Release Channels Each security issue I impacts one or more release
channels. To identify which security channel(s) is affected by issue I, we check
labels in AllLabels field that start with Security_Impact. Based on these, we
identify three release channels during this process: stable, beta, and head.

Further, since an original issue O and all of its duplicate issues report the
same vulnerability, they should impact the same release channels. However, we
find that some pairs of original issue O and its duplicate issue D have one of the
following inconsistencies.

– If the duplicate issue D does not list any release channels and the original
issue O of duplicate issue D has at least one release channel, then set the
release channels of duplicate issue D to the release channels of the original
issue O

– If all duplicate issues of original issue O list the same release channels and
original issue O does not list any release channels, then set the release chan-
nels of original issue O to the release channels of the duplicate issues.

At the end of the process, 8,709 issues do not contain any labels starting
with Security_Impact or contain only the Security_Impact_None. We can
also extract release channels based on the following approach. For each security
issue I, we check for labels in AllLabels field that start with ReleaseBlock.
Based on that, we identify three release channels during this process: stable,
beta, and dev. Both values obtained for release channels based on Security_-
Impact and based on ReleaseBlock, indicate which release channels are affected
by particular issues. But based on ReleaseBlock we can identify the release
channels for only 10% of issues, which is not consistent with the approach based
on Security_Impact.

A.1.3 Components For each issue I, we identify the components from its
Component field. Each issue I will contain a set of components CI . For each
component c in the CI , we extract the set of the group, which indicates a list of all
sub-levels from the top level to the bottom level of the component hierarchy. For
example, if issue I has a component Internals>Plugins>PDF, we extract the
set of the group as Internals,Internals>Plugins,Internals>Plugins>PDF.
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We use GI to denote the set of all groups that correspond to all the components
of the issue I.

Some of the pairs of original issue O and its duplicate issue D have either
one of the following inconsistencies.

– If Component field of duplicate issue D is empty and Component field of the
original issue O is not empty, then we set the Component field of duplicate
issue D to the value of Component field of original issue O

– If the Component field of all duplicate issues of original issue O are the
same and the Component field of the original issue O is empty, we set the
Component field of the original issue O to the value of Component field of
duplicate issues.

– If Component field of all duplicate issues of original issue O are not the
same and Component field of the original issue O is empty but all duplicate
issues of the original issue O contain the same set of groups of components
GD, then we set the Component field of original issue O to the value of
Component field of duplicate issues.

– If Component field of all duplicate issues of original issue O are not the same
and Component field of the original issue O is not empty, then for each pair
of original issue O and duplicate issue D, we check whether it satisfies at
least one of the conditions. If it satisfied, then we set the Component field
of duplicate issue D to the value of Component field of original issue O
• All the components of duplicate issue D (CD) in the set (CO) or the set
(GO).
• All the groups of the components of duplicate issue D (GD) present

either in the set (CO) or the set (GO).

A.1.4 CVE ID For each security issue I, we list all the labels in the AllLabels
field. For each label, we check whether it matches the format CVE-YYYY-XXXXX
where YYYY indicates the particular year in which vulnerability is discovered, and
XXXXX is a serial number corresponding to the vulnerability. If the label matches,
we assign the CVE ID of the issue I to the label.

Some of the pairs of original issue O and its duplicate issue D have either
one of the following inconsistencies.

– If CVE ID is not set for duplicate issueD and the original issue O of duplicate
issue D has the CVE ID, then set CVE ID of duplicate issue D with CVE
ID of the original issue O

– If all duplicate issues of original issue O have the same CVE ID and CVE ID
is not set for the original issue O, then set the CVE ID of original issue O
to CVE ID of the duplicate issues.

A.1.5 First Reported, Fixed, and Released Timestamps First reported
Timestamp (Treported) : the date and time of the first report of a valid original
issue. Fixed Timestamp (Tfix) : the date and time of a valid original issue is
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marked as fixed. Released Timestamp (Trelease) : the date and time a valid
original issue is fixed and released.

For each valid original issue O, we compute Treported based on either one of
the conditions:

– If the valid original issue O reported before all of its duplicate issues, then
we set Treported to the value of OpenedTimestamp field of the valid original
issue O.

– If the valid original issue O is reported after one or more of its duplicates,
we list all the timestamps from the OpenedTimestamp field of all the dupli-
cate issues of the valid original issue O, then set Treported to the minimum
timestamp from the list of all timestamps.

Then, we obtain the release date and time of Chromium releases from Chrome
Releases11. For each valid original issue I, we obtain the associated release version
from the AllLabels field of the issue I. For each label in all labels, we check
whether the label is in the format of Release-X-MXX, and if there exists such
a label, then we make the release details of the valid original issue I with the
label. We first look for the corresponding release from the ChromiumReleases,
and If there exists an entry in the ChromiumReleases for that release details of
valid original issue I, then we fetch the timestamp of the release and set it as
Trelease of the issue I.

Finally, for each valid original issue I, we look for the latest amendment A
where the value of the FieldName field is Status and value of NewOrDeltaValue
field is Fixed. If such an amendment is not found, we look for an amendment A
where the value of the FieldName field is Status and value of NewOrDeltaValue
field is Verified, then we set the Tfix for issue I with the AmendmentTimes-
tamp field of amendment A.

11 https://chromereleases.googleblog.com/

https://chromereleases.googleblog.com/
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